

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0336-5

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1219-1998

(Revision of

IEEE Std 1219-1992)

IEEE Standard for Software
Maintenance

Sponsor

Software Engineering Standards Committee
of the
IEEE Computer Society

Approved 25 June 1998

IEEE-SA Standards Board

Abstract:

 The process for managing and executing software maintenance activities is described.

Keywords:

 life cycle, maintenance, software, software maintenance

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinat-

ing Committees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the

committees serve voluntarily and without compensation. They are not necessarily members of the

Institute. The standards developed within IEEE represent a consensus of the broad expertise on the

subject within the Institute as well as those activities outside of IEEE that have expressed an inter-

est in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply

that there are no other ways to produce, test, measure, purchase, market, or provide other goods and

services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the

time a standard is approved and issued is subject to change brought about through developments in

the state of the art and comments received from users of the standard. Every IEEE Standard is sub-

jected to review at least every Þve years for revision or reafÞrmation. When a document is more

than Þve years old and has not been reafÞrmed, it is reasonable to conclude that its contents,

although still of some value, do not wholly reßect the present state of the art. Users are cautioned to

check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of

membership afÞliation with IEEE. Suggestions for changes in documents should be in the form of a

proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as

they relate to speciÞc applications. When the need for interpretations is brought to the attention of

IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards rep-

resent a consensus of all concerned interests, it is important to ensure that any interpretation has

also received the concurrence of a balance of interests. For this reason, IEEE and the members of its

societies and Standards Coordinating Committees are not able to provide an instant response to

interpretation requests except in those cases where the matter has previously received formal

consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

USA

Authorization to photocopy portions of any individual standard for internal or personal use is

granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate

fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact

Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;

(978) 750-8400. Permission to photocopy portions of any individual standard for educational class-

room use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may

require use of subject matter covered by patent rights. By publication of this standard,

no position is taken with respect to the existence or validity of any patent rights in

connection therewith. The IEEE shall not be responsible for identifying patents for

which a license may be required by an IEEE standard or for conducting inquiries into

the legal validity or scope of those patents that are brought to its attention.

Copyright © 1998 IEEE. All rights reserved.

iii

Introduction

(This introduction is not a part of IEEE Std 1219-1998, IEEE Standard for Software Maintenance.)

This standard describes the process for managing and executing software maintenance activities. Clause 2

lists references to other standards useful in applying this standard. Clause 3 provides a set of deÞnitions and

acronyms that are either not found in other standards, or have been modiÞed for use with this standard.

Clause 4 contains required information pertaining to the software maintenance process. In order to be in

compliance with this standard, Clause 4 must be adhered to.

Annex A, Maintenance guidelines, contains additional information that is not required for compliance. Top-

ics in this annex include: the source of maintenance forms discussed in the standard, validation and veriÞca-

tion (V&V), software quality assurance, risk assessment, safety, security, software conÞguration

management (SCM), metrics, software replacement policy, and the maintenance process. Annex B, Support-

ing maintenance technology, includes the topics of re-engineering, reverse engineering, reuse, maintenance

planning, impact analysis, and software tools.

The readers of this standard are referred to Annexes C and D for guidelines for using this standard to meet

the requirements of IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information TechnologyÑSoftware life

cycle processesÑLife cycle data.

The audience for which this standard is intended consists of software development managers, maintainers,

software quality assurance personnel, SCM personnel, programmers, and researchers.

Participants

This standard was prepared by the Life Cycle Data Harmonization Working Group of the Software Engi-

neering Standards Committee of the IEEE Computer Society. At the time this standard was approved, the

working group consisted of the following members:

Leonard L. Tripp,

Chair

The following persons were on the balloting committee:

Edward Byrne
Paul R. Croll
Perry DeWeese
Robin Fralick
Marilyn Ginsberg-Finner
John Harauz
Mark Henley

Dennis Lawrence
David Maibor
Ray Milovanovic
James Moore
Timothy Niesen
Dennis Rilling

Terry Rout
Richard Schmidt
Norman F. Schneidewind
David Schultz
Basil Sherlund
Peter Voldner
Ronald Wade

Syed Ali
Theodore K. Atchinson
Leo Beltracchi
H. Ronald Berlack
Richard E. Biehl
Juris Borzovs
Audrey C. Brewer
M. Scott Buck
James E. Cardow
Enrico A. Carrara
Keith Chan
Antonio M. Cicu
Theo Clarke
Rosemary Coleman
Virgil Lee Cooper

W. W. Geoff Cozens
Paul R. Croll
Patricia W. Daggett
Gregory T. Daich
Geoffrey Darnton
Taz Daughtrey
Raymond Day
Bostjan K. Derganc
Perry R. DeWeese
James Do
Evelyn S. Dow
Carl Einar Dragstedt
Charles Droz
Sherman Eagles
Leo Egan

Richard L. Evans
William Eventoff
Richard E. Fairley
John W. Fendrich
Jay Forster
Roger U. Fujii
Adel N. Ghannam
Marilyn Ginsberg-Finner
John Garth Glynn
Julio Gonzalez-Sanz
L. M. Gunther
David A. Gustafson
Jon D. Hagar
John Harauz
Robert T. Harley

iv

Copyright © 1998 IEEE. All rights reserved.

When the IEEE-SA Standards Board approved this standard on 25 June 1998, it had the following

membership:

Richard J. Holleman,

 Chair

Donald N. Heirman,

Vice Chair

Judith Gorman,

Secretary

*Member Emeritus

Valerie E. Zelenty

IEEE Standards Project Editor

Herbert Hecht
Manfred Hein
Debra Herrmann
Umesh P. Hiriyannaiah
John W. Horch
George Jackelen
Frank V. Jorgensen
Vladan V. Jovanovic
William S. Junk
Chris F. Kemerer
Ron S. Kenett
Judith S. Kerner
Robert J. Kierzyk
Shaye Koenig
Thomas M. Kurihara
John B. Lane
J. Dennis Lawrence
Stanley H. Levinson
Fang Ching Lim
William M. Lively
John Lord
Stan Magee
David Maibor
Harold Mains
Robert A. Martin

Patrick D. McCray
Sue McGrath
Jerome W. Mersky
Bret Michael
Alan Miller
Celia H. Modell
James W. Moore
Pavol Navrat
Myrna L. Olson
Indradeb P. Pal
Lalit M. Patnaik
David E. Peercy
Alex Polack
Peter T. Poon
Lawrence S. Przybylski
Kenneth R. Ptack
Ann E. Reedy
Terence P. Rout
Andrew P. Sage
Stephen R. Schach
Hans Schaefer
Norman Schneidewind
David J. Schultz
Robert W. Shillato
David M. Siefert
Lynn J. Simms

Carl A. Singer
Nancy M. Smith
Alfred R. Sorkowitz
Donald W. Sova
Luca Spotorno
Fred J. Strauss
Toru Takeshita
Richard H. Thayer
Booker Thomas
Patricia Trellue
Theodore J. Urbanowicz
Glenn D. Venables
Andre Villas-Boas
Udo Voges
Dolores Wallace
William M. Walsh
John W. Walz
Camille S. White-Partain
Scott A. Whitmire
P.� A. Wolfgang
Paul R. Work
Natalie C. Yopconka
Janusz Zalewski
Geraldine Zimmerman
Peter F. Zoll

Satish K. Aggarwal
Clyde R. Camp
James T. Carlo
Gary R. Engmann
Harold E. Epstein
Jay Forster*
Thomas F. Garrity
Ruben D. Garzon

James H. Gurney
Jim D. Isaak
Lowell G. Johnson
Robert Kennelly
E. G. ÒAlÓ Kiener
Joseph L. KoepÞnger*
Stephen R. Lambert
Jim Logothetis
Donald C. Loughry

L. Bruce McClung
Louis-Fran�ois Pau
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Hans E. Weinrich
Donald W. Zipse

Copyright © 1998 IEEE. All rights reserved.

v

Contents

1. Overview.. 1

1.1 Scope.. 1

1.2 Terminology... 1

1.3 Conventions ... 2

2. References.. 2

3. Definitions and acronyms .. 3

3.1 Definitions.. 3

3.2 Acronyms... 4

4. Software maintenance.. 5

4.1 Problem/modification identification, classification, and prioritization 5

4.2 Analysis.. 8

4.3 Design .. 11

4.4 Implementation .. 12

4.5 System test ... 14

4.6 Acceptance test .. 15

4.7 Delivery.. 17

Annex A (informative) Maintenance guidelines ... 18

Annex B (informative) Supporting maintenance technology ... 34

Annex C (normative) Maintenance plan guidelines.. 39

Annex D (informative) Guidelines for compliance with IEEE/EIA 12207.1-1997.................................... 43

Copyright © 1998 IEEE. All rights reserved.

1

IEEE Standard for Software
Maintenance

1. Overview

1.1 Scope

This standard describes an iterative process for managing and executing software maintenance activities.

Use of this standard is not restricted by size, complexity, criticality, or application of the software product.

This standard uses the process model, depicted in Table 2, to discuss and depict each phase of software

maintenance. The criteria established apply to both the planning of maintenance for software while under

development, as well as the planning and execution of software maintenance activities for existing software

products. Ideally, maintenance planning should begin during the stage of planning for software development

(see A.3 for guidance).

This standard prescribes requirements for process, control, and management of the planning, execution, and

documentation of software maintenance activities. In totality, the requirements constitute a minimal set of

criteria that are necessary and sufÞcient conditions for conformance to this standard. Users of this standard

may incorporate other items by reference or as text to meet their speciÞc needs.

The basic process model includes input, process, output, and control for software maintenance. Metrics/

measures captured for maintenance should enable the manager to manage the process and the implementor

to implement the process (see Table 3). This standard does not presuppose the use of any particular develop-

ment model (e.g., waterfall, spiral, etc.).

This standard provides additional software maintenance guidance on associated topics in Annex A and tools/

technology assistance in Annex B. Maintenance plan guidelines are provided in Annex C and guidelines for

compliance with IEEE/EIA 12207.1-1997 are provided in Annex D.

1.2 Terminology

The words

shall

 and

must

 identify the mandatory (essential) material within this standard. The words

should

and

may

 identify optional (conditional) material. The terminology in this standard is based on IEEE Std

610.12-1990.

1

 New terms and modiÞed deÞnitions as applied in this standard are included in Clause 3.

1

 Information on references can be found in Clause 2.

IEEE
Std 1219-1998 IEEE STANDARD FOR

2

Copyright © 1998 IEEE. All rights reserved.

1.3 Conventions

The conventions used in each Þgure depicting a maintenance phase are shown in Figure 1.

The term

associated processes

 refers to external processes that are deÞned in other standards; i.e., software

quality assurance (SQA), software conÞguration management (SCM), and veriÞcation and validation

(V&V). The term

associated processes

 also refers to the metrics process illustrated within this standard.

2. References

Table 1 provides a cross-reference of IEEE standards that address various topics related to software mainte-

nance. This standard shall be used in conjunction with the following publications. When the following stan-

dards are superseded by an approved revision, the revision shall apply.

IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.

2

IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans.

IEEE Std 730.1-1995, IEEE Guide for Software Quality Assurance Planning.

IEEE Std 828-1998, IEEE Standard for Software ConÞguration Management Plans.

3

IEEE Std 829-1998, IEEE Standard for Software Test Documentation.

4

IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software.

IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reli-

able Software.

IEEE Std 1012-1998, IEEE Standard for Software VeriÞcation and Validation.

IEEE Std 1012a-1998, IEEE Standard for Software VeriÞcation and Validation: Content Map to IEEE/EIA

12207.1-1997.

5

IEEE Std 1028-1997, IEEE Standard for Software Reviews.

IEEE Std 1042-1987 (Reaff 1993), IEEE Guide to Software ConÞguration Management.

2

IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA.

3

As this standard goes to press, IEEE Std 828-1998, IEEE Std 829-1998, and IEEE Std 1012a-1998 are approved but not yet published.
The draft standards are, however, available from the IEEE. Anticipated publication date is Fall 1998. Contact the IEEE Standards
Department at 1 (732) 562-3800 for status information.

4

See Footnote 3.

5

See Footnote 3.

PROCESS NAMEINPUT OUTPUT

ASSOCIATED PROCESS

CONTROL

Figure 1ÑConventions

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved.

3

IEEE P1058/D2.1, Draft Standard for Software Project Management Plans, dated 5 August 1998.

6

IEEE Std 1058a-1998, IEEE Standard for Software Project Management Plans: Content Map to IEEE/EIA

12207.1-1997.

7

IEEE Std 1074-1997, IEEE Standard for Developing Software Life Cycle Processes.

3. DeÞnitions and acronyms

3.1 DeÞnitions

The deÞnitions listed below establish meaning in the context of this standard. These are contextual deÞni-

tions serving to augment the understanding of software maintenance activities as described within this stan-

dard. Other deÞnitions can be found in IEEE Std 610.12-1990.

3.1.1 adaptive maintenance:

 ModiÞcation of a software product performed after delivery to keep a

computer program usable in a changed or changing environment.

6

Upon approval of IEEE P1058 by the IEEE-SA Standards Board, this standard will be integrated with IEEE Std 1058a-1998 and
published as IEEE Std 1058, 1998 Edition. Approval is expected 8 December 1998.

7

See Footnote 6.

Table 1ÑThe relationship of IEEE software engineering standards to IEEE Std 1219-1998

Relationship IEEE standard

Process Problem ID/classiÞcation Ñ

Analysis 830-1998, 1074-1997

Design 830-1998, 1016-1998, 1074-1997

Implementation 1008-1987, 1074-1997

System test 829-1998, 1012-1998, 1012a-1998, 1028-1988, 1074-1997

Acceptance testing 1012-1998, 1012a-1998, 1074-1997

Delivery Ñ

Control Problem ID/classiÞcation Ñ

Analysis 830-1998

Design 830-1998, 1016-1998

Implementation 829-1998, 1008-1987

System test 829-1998, 1012-1998, 1012a-1998, 1028-1988

Acceptance testing 829-1998, 1012-1998, 1012a-1998, 1028-1988

Delivery 1063-1987

Management ConÞguration management 828-1998, 1042-1987

Measurement/metrics 982.1-1988, 982.2-1988

Planning 829-1998, 1012-1998, 1012a-1998, P1058/D2.1, 1058a-1998

Tools/techniques Ñ

Quality Assurance 730-1998, 730.1-1995

Risk assessment 730-1998, 982.2-1988

Safety Ñ

Security Ñ

IEEE
Std 1219-1998 IEEE STANDARD FOR

4

Copyright © 1998 IEEE. All rights reserved.

3.1.2 corrective maintenance:

 Reactive modiÞcation of a software product performed after delivery to

correct discovered faults.

3.1.3 customer:

 The person, or persons, for whom the product is intended, and usually (but not necessarily)

who decides the requirements.

3.1.4 emergency maintenance:

 Unscheduled corrective maintenance performed to keep a system opera-

tional.

3.1.5 interoperability testing:

 Testing conducted to ensure that a modiÞed system retains the capability of

exchanging information with systems of different types, and of using that information.

3.1.6 modiÞcation request (MR):

 A generic term that includes the forms associated with the various trou-

ble/problem-reporting documents (e.g., incident report, trouble report) and the conÞguration change control

documents [e.g., software change request (SCR)].

3.1.7 perfective maintenance:

 ModiÞcation of a software product after delivery to improve performance or

maintainability.

3.1.8 project:

 A subsystem that is subject to maintenance activity.

3.1.9 regression test:

 Retesting to detect faults introduced by modiÞcation.

3.1.10 repository: (A)

A collection of all software-related artifacts (e.g., the software engineering environ-

ment) belonging to a system.

 (B)

 The location/format in which such a collection is stored.

3.1.11 reverse engineering:

 The process of extracting software system information (including documenta-

tion) from source code.

3.1.12 software maintenance:

 ModiÞcation of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modiÞed environment.

3.1.13 system:

 A set of interlinked units organized to accomplish one or several speciÞc functions.

3.1.14 user:

 The person or persons operating or interacting directly with the system.

3.2 Acronyms

The following acronyms are referred to in this standard:

CARE computer-assisted re-engineering

CASE computer-aided software engineering

CM conÞguration management

CPU central processing unit

CSA conÞguration status accounting

FCA functional conÞguration audit

FR feasibility report

I/O input/output

LC linear circuit

MP maintenance plan

MR modiÞcation request

PCA physical conÞguration audit

PDL program design language

SCA software change authorization

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved.

5

SCM software conÞguration management

SCR system/software change request

SE software engineering

SLOC source lines of code

SQA software quality assurance

V&V veriÞcation and validation

VDD version description document

4. Software maintenance

This standard deÞnes changes to the software process through a deÞned maintenance process that includes

the following phases:

a) Problem/modiÞcation identiÞcation, classiÞcation, and prioritization;

b) Analysis;

c) Design;

d) Implementation;

e) Regression/system testing;

f) Acceptance testing; and

g) Delivery.

These phases are graphically depicted in Table 2. Software maintenance factors in Table 3 are the entities

qualiÞed by the associated metrics/measures identiÞed for each phase.

4.1 Problem/modiÞcation identiÞcation, classiÞcation, and prioritization

In this phase, software modiÞcations are identiÞed, classiÞed, and assigned an initial priority ranking. Each

modiÞcation request (MR) shall be evaluated to determine its classiÞcation and handling priority. ClassiÞca-

tion shall be identiÞed from the following maintenance types:

a) Corrective;

b) Adaptive;

c) Perfective; and

d) Emergency.

Metrics/measures and associated factors identiÞed for this phase should be collected and reviewed at appro-

priate intervals (see Table 3 and IEEE Std 982.1-1988 and IEEE Std 982.2-1988).

4.1.1 Input

Input for the problem/modiÞcation identiÞcation and classiÞcation phase shall be an MR.

4.1.2 Process

If a modiÞcation to the software is required, the following determinative activities shall occur within the

maintenance process:

a) Assign an identiÞcation number;

b) Classify the type of maintenance;

c) Analyze the modiÞcation to determine whether to accept, reject, or further evaluate;

d) Make a preliminary estimate of the modiÞcation size/magnitude;

e) Prioritize the modiÞcation; and

f) Assign an MR to a block of modiÞcations scheduled for implementation.

IIE
E

E
S

td
 1

2
1
9
-1

9
9
8

IE
E

E
 S

T
A

N
D

A
R

D
 F

O
R

6

C
o
p
y
rig

h
t ©

 1
9
9
8
 IE

E
E

. A
ll rig

h
ts

 re
s
e
rve

d
.

Table 2ÑProcess model for software maintenance

Problem
identiÞcation

Analysis Design Implementation System test Acceptance test Delivery

Input

MR Project/system document
Repository information
Validated MR

Project/system document
Source code
Databases
Analysis phase output

Source code
Product/system document
Results of design phase

Updated software
 documentation
Test-readiness
 review report
Updated system

Test-readiness review
 report
Fully integrated system
Acceptance test
 ¥ Plans
 ¥ Cases
 ¥ Procedures

Tested/
 accepted
 system

Process

Assign change number
Classify
Accept or reject
 change
Preliminary magnitude
 estimate
Prioritize

Feasibility analysis
Detailed analysis
Redocument, if needed

Create test cases
Revise
 ¥ Requirements
 ¥ Implementation plan

Code
Unit test
Test-readiness review

Functional test
Interface testing
Regression testing
Test-readiness
 review

Acceptance test
Interoperability test

PCA
Install
Training

Control

Uniquely identify MR
Enter MR into
 repository

Conduct technical review
Verify
 ¥ Test strategy
 ¥ Documentation is updated
Identify safety and security
 issues

Software inspection/review
Verify design

Software inspection/
 review
Verify
 ¥ CM control of software
 ¥ Traceability of design

CM control of
 ¥ Code
 ¥ Listings
 ¥ MR
 ¥ Test
 documentation

Acceptance test
Functional audit
Establish baseline

PCA
VDD

Output

Validated MR
Process determinations

Feasibility report (FR)
Detailed analysis report
Updated requirements
Preliminary modiÞcation list
Implementation plan
Test strategy

Revised
 ¥ ModiÞcation list
 ¥ Detail analysis
 ¥ Implementation plan
Updated
 ¥ Design baseline
 ¥ Test plans

Updated
 ¥ Software
 ¥ Design documents
 ¥ Test documents
 ¥ User documents
 ¥ Training material
Test-readiness review
 report

Tested system
Test reports

New system baseline
Acceptance test report
FCA report

PCA
report
VDD

Metrics

See Table 3

IE
E

E
S

O
F

T
W

A
R

E
 M

A
IN

T
E

N
A

N
C

E
S

td
 1

2
1
9
-1

9
9
8

C
o
p
y
rig

h
t ©

 1
9
9
8
 IE

E
E

. A
ll rig

h
ts

 re
s
e
rve

d
.

7

Table 3ÑProcess model metrics for software maintenance

Problem
identiÞcation

Analysis Design Implementation System test Acceptance test Delivery

Factors

Correctness
Maintainability

Flexibility
Traceability
Reusability
Usability
Maintainability
Comprehensibility

Flexibility
Traceability
Reusability
Testability
Maintainability
Comprehensibility
Reliability

Flexibility
Traceability
Maintainability
Comprehensibility
Reliability

Flexibility
Traceability
VeriÞability
Testability
Interoperability
Comprehensibility
Reliability

Flexibility
Traceability
Interoperability
Testability
Comprehensibility
Reliability

Completeness
Reliability

Metrics

No. of omissions on
 MR
No. of MR submittals
No. of duplicate MRs
Time expended for
 problem validation

Requirement changes
Documentation error
 rates
Effort per function area
 (SQA, SE, etc.)
Elapsed time (schedule)
Error rates generated by
 priority and type

Software complexity
Design changes
Effort per function
 area
Elapsed time
Test plans and
 procedure changes
Error rates generated
 by priority and type
Number of lines of
 code added, deleted,
 modiÞed, tested
Number of
 applications

Volume/functionality
 (function points or
 source lines of code)
Error rates generated
 by priority and type

Error rates by
 priority and type
 ¥ Generated
 ¥ Corrected

Error rates by
 priority and type
 ¥ Generated
 ¥ Corrected

Documentation changes
 (i.e., VDDs, training
 manuals, operation
 guidelines)

IEEE
Std 1219-1998 IEEE STANDARD FOR

8

Copyright © 1998 IEEE. All rights reserved.

Figure 2 summarizes the input, process, control, and output for the problem/modiÞcation identiÞcation and

classiÞcation phase of maintenance. For additional information, see also A.4.1.

4.1.3 Control

MR and process determinations shall be uniquely identiÞed and entered into a repository. See also A.11.1 for

guidance.

4.1.4 Output

The output of this process shall be the validated MR and the process determinations that were stored in a

repository. The repository shall contain the following items:

a) Statement of the problem or new requirement;

b) Problem or requirement evaluation;

c) ClassiÞcation of the type of maintenance required;

d) Initial priority;

e) VeriÞcation data;

f) Initial estimate of resources required to modify the existing system.

4.2 Analysis

The analysis phase shall use the repository information and the MR validated in the modiÞcation identiÞca-

tion and classiÞcation phase, along with system and project documentation, to study the feasibility and scope

of the modiÞcation and to devise a preliminary plan for design, implementation, test, and delivery. Metrics/

measures and associated factors identiÞed for this phase should be collected and reviewed at appropriate

intervals (see Table 3 and IEEE Std 982.1-1988 and IEEE Std 982.2-1988).

Figure 3 summarizes the input, process, control, and output for the analysis phase of maintenance. For addi-

tional guidance, see A.4.2.

PROBLEM/MODIFICATION
IDENTIFICATION & CLASSIFICATION

MR
VALIDATED MR
PROCESS DETERMINATIONS

METRICS/ MEASURES

UNIQUELY IDENTIFY MR
ENTER MR INTO REPOSITORY

Figure 2ÑProblem/modiÞcation identiÞcation and classiÞcation phase

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved.

9

4.2.1 Input

The input to the analysis phase of the maintenance process shall include the following:

a) Validated MR;

b) Initial resource estimate and other repository information;

c) Project and system documentation, if available.

4.2.2 Process

Analysis is an iterative process having at least two components:

a) A feasibility analysis; and

b) A detailed analysis.

If the documentation is not available or is insufÞcient and the source code is the only reliable representation

of the software system, reverse engineering is recommended (see Annex B for guidance).

4.2.2.1 Feasibility analysis

A feasibility analysis shall be performed for an MR and an FR shall be prepared. This FR should contain the

following:

a) Impact of the modiÞcation;

b) Alternate solutions, including prototyping;

c) Analysis of conversion requirements;

d) Safety and security implications;

e) Human factors;

f) Short-term and long-term costs;

g) Value of the beneÞt of making the modiÞcation.

4.2.2.2 Detailed analysis

Detailed analysis shall include the following:

a) DeÞne Þrm requirements for the modiÞcation;

b) Identify the elements of modiÞcation;

c) Identify safety and security issues (see also A.9 and A.10 for guidance);

d) Devise a test strategy;

e) Develop an implementation plan.

VALIDATED MR
PROJECT/SYSTEM DOCUMENT
REPOSITORY INFORMATION

FR FOR MR
DETAILED ANALYSIS REPORT
UPDATED REQUIREMENTS
PRELIMINARY MODIFICATION LIST
TEST STRATEGY
IMPLEMENTATION PLAN

METRICS/MEASURES

CONDUCT TECHNICAL REVIEW
VERIFY THAT DOCUMENTATION IS UPDATED
VERIFY TEST STRATEGY
IDENTIFY SAFETY AND SECURITY ISSUES

ANALYSIS

Figure 3ÑAnalysis phase

IEEE
Std 1219-1998 IEEE STANDARD FOR

10

Copyright © 1998 IEEE. All rights reserved.

In identifying the elements of modiÞcation (creating the preliminary modiÞcation list), analysts examine all

products (e.g., software, speciÞcations, databases, documentation) that are affected. Each of these products

shall be identiÞed, and generated if necessary, specifying the portions of the product to be modiÞed, the

interfaces affected, the user-noticeable changes expected, the relative degree and kind of experience required

to make changes, and the estimated time to complete the modiÞcation.

The test strategy is based on input from the previous activity identifying the elements of modiÞcation.

Requirements for at least three levels of test, including individual element tests, integration tests, and user-

oriented functional acceptance tests shall be deÞned. Regression test requirements associated with each of

these levels of test shall be identiÞed as well. The test cases to be used for testing to establish the test base-

line shall be revalidated.

A preliminary implementation plan shall state how the design, implementation, testing, and delivery of the

modiÞcation is to be accomplished with a minimal impact to current users.

4.2.3 Control

Control of analysis shall include the following:

a) Retrieval of the relevant version of project and system documentation from the conÞguration control

function of the organization;

b) Review of the proposed changes and engineering analysis to assess technical and economic feasibil-

ity, and assess correctness;

c) IdentiÞcation of safety and security issues;

d) Consideration of the integration of the proposed change within the existing software;

e) VeriÞcation that all appropriate analysis and project documentation is updated and properly

controlled;

f) VeriÞcation that the test function of the organization is providing a strategy for testing the change(s),

and that the change schedule can support the proposed test strategy;

g) Review of the resource estimates and schedules and veriÞcation of their accuracy;

h) Technical review to select the problem reports and proposed enhancements to be implemented in the

new release. The list of changes shall be documented.

Consult A.6, A.7, and A.11.2 for guidance on activities related to V&V, SQA, and SCM.

At the end of the analysis phase, a risk analysis shall be performed (see also A.8 for guidance). Using the

output of the analysis phase, the preliminary resource estimate shall be revised, and a decision, that includes

the customer, is made on whether to proceed to the design phase.

4.2.4 Output

The output of the maintenance process analysis phase shall include the following:

a) FR for MRs;

b) Detailed analysis report;

c) Updated requirements (including traceability list);

d) Preliminary modiÞcation list;

e) Test strategy;

f) Implementation plan.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved.

11

4.3 Design

In the design phase, all current system and project documentation, existing software and databases, and the

output of the analysis phase (including detailed analysis, statements of requirements, identiÞcation of

elements affected, test strategy, and implementation plan) shall be used to design the modiÞcation to the

system. Metrics/measures and associated factors identiÞed for this phase should be collected and reviewed at

appropriate intervals (see Table 3 and IEEE Std 982.1-1988 and IEEE Std 982.2-1988).

Figure 4 summarizes the input, process, control, and output for the design phase of maintenance. (For addi-

tional guidance, see also A.4.3.)

4.3.1 Input

Input to the design phase of the maintenance process shall include the following:

a) Analysis phase output, including

1) Detailed analysis

2) Updated statement of requirements

3) Preliminary modiÞcation list

4) Test strategy

5) Implementation plan

b) System and project documentation

c) Existing source code, comments, and databases

4.3.2 Process

The process steps for design shall include the following:

a) Identify affected software modules;

b) Modify software module documentation [e.g., data and control ßow diagrams, schematics, program

design language (PDL), etc.];

c) Create test cases for the new design, including safety and security issues (for guidance, see also A.9

and A.10);

d) Identify/create regression tests;

e) Identify documentation (system/user) update requirements;

f) Update modiÞcation list.

Figure 4ÑDesign phase

SYSTEM/PROJECT DOCUMENT
ANALYSIS PHASE OUTPUT
SOURCE CODE, DATABASE

REVISED MODIFICATION LIST
UPDATED DESIGN BASELINE
UPDATED TEST PLAN
REVISED DETAIL ANALYSIS
VERIFIED REQUIREMENTS
REVISED IMPLEMENTATION PLAN
DOCUMENTED CONSTRAINTS AND RISKS

METRICS/MEASURES

CONDUCT SOFTWARE INSPECTION
VERIFY THAT DESIGN IS DOCUMENTED
COMPLETE TRACEABILITY OF REQUIREMENTS TO DESIGN

DESIGN

IEEE
Std 1219-1998 IEEE STANDARD FOR

12

Copyright © 1998 IEEE. All rights reserved.

4.3.3 Control

The following control mechanism shall be used during the design phase of a change:

a) Conduct software inspection of the design in compliance with IEEE Std 1028-1997.

b) Verify that the new design/requirement is documented as a software change authorization (SCA), as

per IEEE Std 1042-1987.

c) Verify the inclusion of new design material, including safety and security issues.

d) Verify that the appropriate test documentation has been updated.

e) Complete the traceability of the requirements to the design.

Consult A.6, A.7, and A.11.2 for guidance on activities related to V&V, SQA, and SCM.

4.3.4 Output

The output of the design phase of the maintenance process shall include the following:

a) Revised modiÞcation list;

b) Updated design baseline;

c) Updated test plans;

d) Revised detailed analysis;

e) VeriÞed requirements;

f) Revised implementation plan;

g) A list of documented constraints and risks (for guidance, see A.8).

4.4 Implementation

In the implementation phase, the results of the design phase, the current source code, and project and system

documentation (i.e., the entire system as updated by the analysis and design phases) shall be used to drive

the implementation effort, Metrics/measures and associated factors identiÞed for this phase should be

collected and reviewed at appropriate intervals (see Table 3 and IEEE Std 982.1-1988 and IEEE Std 982.2-

1988).

Figure 5 summarizes the input, process, control, and output for the implementation phase of maintenance.

For additional guidance, see also A.4.4.

RESULTS OF DESIGN PHASE
SOURCE CODE
PROJECT DOCUMENTATION
SYSTEM DOCUMENTATION

UPDATED
 ¥ SOFTWARE
 ¥ DESIGN DOCUMENTS
 ¥ TEST DOCUMENTS
 ¥ USER DOCUMENTS
 ¥ TRAINING MATERIAL
STATEMENT OF RISK
TEST-READINESS REVIEW REPORT

METRICS/ MEASURES

CONDUCT SOFTWARE INSPECTIONS
ENSURE THAT UNIT AND INTEGRATION TESTING ARE PERFORMED AND DOCUMENTED
VERIFY:
 ¥ NEW SOFTWARE PLACED UNDER CM CONTROL
 ¥ TRAINING AND TECHNICAL DOCUMENTATION HAVE BEEN UPDATED
 ¥ TRACEABILITY OF DESIGN TO CODE

IMPLEMENTATION

Figure 5ÑImplementation phase

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved.

13

4.4.1 Input

The input to the implementation phase shall include the following:

a) Results of the design phase;

b) Current source code, comments, and databases;

c) Project and system documentation.

4.4.2 Process

The implementation phase shall include the following four subprocesses, which may be repeated in an incre-

mental, iterative approach:

a) Coding and unit testing;

b) Integration;

c) Risk analysis;

d) Test-readiness review.

Metrics/measures and associated factors identiÞed for this phase should be collected and reviewed at appro-

priate intervals (see Table 3 and IEEE Std 982.1-1988 and IEEE Std 982.2-1988).

4.4.2.1 Coding and unit testing

The change shall be implemented into the code, and unit testing and other appropriate SQA and V&V

processes shall be performed.

4.4.2.2 Integration

After the modiÞcations are coded and unit-tested, or at appropriate intervals during coding, the modiÞed

software shall be integrated with the system and integration and regression tests shall be reÞned and

performed. All effects (e.g., functional, performance, usability, safety) of the modiÞcation on the existing

system shall be assessed. Any unacceptable impacts shall be noted. A return to the coding and unit-testing

subprocess shall be made to remedy these.

4.4.2.3 Risk analysis and review

In the implementation phase, risk analysis and review shall be performed periodically during the phase

rather than at its end, as in the design and analysis phases. Metrics/measurement data should be used to

quantify risk analysis. For additional guidance, see A.8.

4.4.2.4 Test-readiness review

To assess preparedness for system test, a test-readiness review shall be held in accordance with IEEE Std

1028-1997.

4.4.3 Control

The control of implementation shall include the following:

a) Conduct software inspections of the code in compliance with IEEE Std 1028-1997.

b) Ensure that unit and integration testing are performed and documented in a software development

folder.

c) Ensure that test documentation (e.g., test plan, test cases, and test procedures) are either updated or

created.

d) Identify, document, and resolve any risks exposed during software and test-readiness reviews.

IEEE
Std 1219-1998 IEEE STANDARD FOR

14

Copyright © 1998 IEEE. All rights reserved.

e) Verify that the new software is placed under SCM control.

f) Verify that the training and technical documentation have been updated.

g) Verify the traceability of the design to the code.

Consult A.6, A.7, and A.11.2 for guidance on activities related to V&V, SQA, and SCM.

4.4.4 Output

The output of the implementation phase shall include the following:

a) Updated software;

b) Updated design documentation;

c) Updated test documentation;

d) Updated user documentation;

e) Updated training material;

f) A statement of risk and impact to users;

g) Test-readiness review report (see IEEE Std 1028-1997).

4.5 System test

System testing, as deÞned in IEEE Std 610.12-1990, shall be performed on the modiÞed system. Regression

testing is a part of system testing and shall be performed to validate that the modiÞed code does not intro-

duce faults that did not exist prior to the maintenance activity. Metrics/measures and associated factors iden-

tiÞed for this phase should be collected and reviewed at appropriate intervals (see Table 3 and IEEE Std

982.1-1988 and IEEE Std 982.2-1988).

Figure 6 summarizes the input, process, control, and output for the system test phase of maintenance. For

additional guidance, see also A.4.5.

4.5.1 Input

Input to the system test phase of maintenance shall include the following:

a) Test-readiness review report

b) Documentation, which includes:

1) System test plans (IEEE Std 829-1998)

2) System test cases (IEEE Std 829-1998)

3) System test procedures (IEEE Std 829-1998)

4) User manuals

5) Design

c) Updated system

Figure 6ÑSystem test phase

UPDATED SOFTWARE
DOCUMENTATION
TEST-READINESS REVIEW REPORT
UPDATED SYSTEM

METRICS/ MEASURES

PLACE UNDER CM
 ¥ SOFTWARE CODE AND LISTINGS
 ¥ MRs
 ¥ TEST DOCUMENTATION

SYSTEM TEST
TESTED FULLY INTEGRATED SYSTEM
TEST REPORTS
TEST-READINESS REVIEW REPORT

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved.

15

4.5.2 Process

System tests shall be conducted on a fully integrated system. Testing shall include the following:

a) System functional test;

b) Interface testing;

c) Regression testing;

d) Test-readiness review to assess preparedness for acceptance testing.

NOTEÑResults of tests conducted prior to the test-readiness review should not be used as part of the system test report
to substantiate requirements at the system level. This is necessary to ensure that the test organization does not consider
that testing all parts (one at a time) of the system constitutes a Òsystem test.Ó

4.5.3 Control

System tests shall be conducted by an independent test function, or by the SQA function. Prior to the com-

pletion of system testing, the test function shall be responsible for reporting the status of the criteria that had

been established in the test plan for satisfactory completion of system testing. The status shall be reported to

the appropriate review committee prior to proceeding to acceptance testing. Software code listings, MRs,

and test documentation shall be placed under SCM. The customer shall participate in the review to ascertain

that the maintenance release is ready to begin acceptance testing.

Consult A.6, A.7, and A.11.2 for guidance on activities related to V&V, SQA, and SCM.

4.5.4 Output

The output for this phase of maintenance shall include the following:

a) Tested and fully integrated system;

b) Test report;

c) Test-readiness review report.

4.6 Acceptance test

Acceptance tests shall be conducted on a fully integrated system. Acceptance tests shall be performed by

either the customer, the user of the modiÞcation package, or a third party designated by the customer. An

acceptance test is conducted with software that is under SCM in accordance with the provisions of IEEE Std

828-1998, and in accordance with the IEEE Std 730-1998. Acceptance testing, as deÞned in IEEE Std

610.12-1990, shall be performed on the modiÞed system. Metrics/measures and associated factors identiÞed

for this phase should be collected and reviewed at appropriate intervals (see Table 3 of this standard, and

IEEE Std 982.1-1988 and IEEE Std 982.2-1988).

Figure 7 summarizes the input, process, control, and output for the acceptance test phase of maintenance.

For additional guidance, see also A.4.6.

IEEE
Std 1219-1998 IEEE STANDARD FOR

16

Copyright © 1998 IEEE. All rights reserved.

4.6.1 Input

The input for acceptance testing shall include the following:

a) Test-readiness review report;

b) Fully integrated system;

c) Acceptance test plans;

d) Acceptance test cases;

e) Acceptance test procedures.

4.6.2 Process

The following are the process steps for acceptance testing:

a) Perform acceptance tests at the functional level;

b) Perform interoperability testing;

c) Perform regression testing.

4.6.3 Control

Control of acceptance tests shall include the following:

a) Execute acceptance tests;

b) Report test results for the functional conÞguration audit (FCA);

c) Conduct functional audit;

d) Establish the new system baseline;

e) Place the acceptance test documentation under SCM control.

Consult A.6, A.7, and A.11.2 for guidance on activities related to V&V, SQA, and SCM.

4.6.4 Output

The output for the acceptance phase shall include the following:

a) New system baseline;

b) FCA report (see IEEE Std 1028-1997);

c) Acceptance test report (see IEEE Std 1042-1987).

NOTEÑThe customer shall be responsible for the acceptance test report.

TEST-READINESS REVIEW REPORT
FULLY INTEGRATED SYSTEM
ACCEPTANCE TEST PLANS
ACCEPTANCE TEST CASES
ACCEPTANCE TEST PROCEDURES

METRICS/ MEASURES

EXECUTE ACCEPTANCE TESTS
REPORT TEST RESULTS
CONDUCT FUNCTIONAL AUDIT
ESTABLISH NEW BASELINE
PLACE ACCEPTANCE TEST DOCUMENTATION UNDER CM

ACCEPTANCE TEST
NEW SYSTEM BASELINE
FCA REPORT
ACCEPTANCE TEST REPORT

Figure 7ÑAcceptance test phase

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 17

4.7 Delivery

This subclause describes the requirements for the delivery of a modiÞed software system. Metrics/measures

and associated factors identiÞed for this phase should be collected and reviewed at appropriate intervals (see

Table 3 and IEEE Std 982.1-1988 and IEEE Std 982.2-1988).

Figure 8 summarizes the input, process, control, and output for the delivery phase of maintenance. For addi-

tional guidance, see also A.4.7.

4.7.1 Input

The input to this phase of the maintenance process shall be the fully tested version of the system as repre-

sented in the new baseline.

4.7.2 Process

The process steps for delivery of a modiÞed product shall include the following:

a) Conduct a physical conÞguration audit (PCA);

b) Notify the user community;

c) Develop an archival version of the system for backup;

d) Perform installation and training at the customer facility.

4.7.3 Control

Control for delivery shall include the following:

a) Arrange and document a PCA;

b) Provide system materials for access to users, including replication and distribution;

c) Complete the version description document (VDD) (IEEE Std 1042-1987);

d) Complete updates to status accounting database;

e) Place contents of the delivery under SCM control.

Consult A.6, A.7, and A.11.2 for guidance on activities related to V&V, SQA, and SCM.

4.7.4 Output

Output for delivery shall include the following:

a) PCA report (IEEE Std 1028-1997);

b) VDD.

TESTED/ACCEPTED SYSTEM

ARRANGE PCA
COMPLETE VDD
COMPLETE UPDATES TO STATUS ACCOUNTING DATABASE

DELIVERY PCA REPORT
VDD

Figure 8ÑDelivery phase

METRICS/ MEASURES

IEEE
Std 1219-1998 IEEE STANDARD FOR

18 Copyright © 1998 IEEE. All rights reserved.

Annex A

(informative)

Maintenance guidelines

A.1 DeÞnitions

The deÞnitions listed below deÞne terms as used in this annex.

A.1.1 completeness: The state of software in which full implementation of the required functions is

provided.

A.1.2 comprehensibility: The quality of being able to be understood; intelligibility, conceivability.

A.1.3 consistency: Uniformity of design and implementation techniques and notation.

A.1.4 correctness: The state of software in which traceability, consistency, and completeness are provided.

A.1.5 instrumentation: The attributes of software that provide for the measurement of usage or identiÞca-

tion of errors.

A.1.6 modularity: Being provided with a structure of highly independent modules.

A.1.7 preventive maintenance: Maintenance performed for the purpose of preventing problems before they

occur.

A.1.8 safety: The ability of a system to avoid catastrophic behavior.

A.1.9 self-descriptiveness: The extent of a softwareÕs ability to provide an explanation of the implementa-

tion of a function or functions.

A.1.10 simplicity: The provision of implementation of functions in the most understandable manner

(usually avoidance of practices that increase complexity).

A.1.11 software risk: The potential loss due to failure during a speciÞc time period.

A.1.12 testability: The ability of a software to provide simplicity, modularity, instrumentation, and self-

descriptiveness.

A.1.13 traceability: The ability of a software to provide a thread from the requirements to the implementa-

tion, with respect to the speciÞc development and operational environment.

A.1.14 veriÞability: The capability of a software to be veriÞed, proved, or conÞrmed by examination or

investigation.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 19

A.2 References

The following standards are directly referenced in this annex. Table 1 provides a cross-reference of IEEE

standards that address various topics related to software maintenance. These standards are binding to the

extent speciÞed within the text of this standard and are referenced to avoid duplication of requirements.

IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans.8

IEEE Std 730.1-1995, IEEE Guide for Software Quality Assurance Planning.

IEEE Std 828-1998, IEEE Standard for Software ConÞguration Management Plans.9

IEEE Std 829-1998, IEEE Standard for Software Test Documentation.10

IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software.

IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reli-

able Software.

IEEE Std 1012-1998, IEEE Standard for Software VeriÞcation and Validation.

IEEE Std 1012a-1998, IEEE Standard for Software VeriÞcation and Validation: Content Map to IEEE/EIA

12207.1-1997.11

IEEE Std 1028-1997, IEEE Standard for Software Reviews.

IEEE Std 1042-1987 (Reaff 1993), IEEE Guide to Software ConÞguration Management.

IEEE P1058/D2.1, Draft Standard for Software Project Management Plans, dated 5 August 1998.12

IEEE Std 1058a-1998, IEEE Standard for Software Project Management Plans: Content Map to IEEE/EIA

12207.1-1997.13

IEEE Std 1228-1994, IEEE Standard for Software Safety Plans.

NIST FIPS Pub. No. 106, Guideline on Software Maintenance, 1984.14

A.3 Maintenance planning

Planning for maintenance may include: determining the maintenance effort, determining the current mainte-

nance process, quantifying the maintenance effort, projecting maintenance requirements, and developing a

maintenance plan. IEEE P1058/D2.1 and IEEE Std 1058a-1998 may also be used for guidance in mainte-

nance planning.

8 IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA.
9As this standard goes to press, IEEE Std 828-1998, IEEE Std 829-1998, and IEEE Std 1012a-1998 are approved but not yet published.
The draft standards are, however, available from the IEEE. Anticipated publication date is Fall 1998. Contact the IEEE Standards
Department at 1 (732) 562-3800 for status information.
10See Footnote 9.
11See Footnote 9.
12Upon approval of IEEE P1058 by the IEEE-SA Standards Board, this standard will be integrated with IEEE Std 1058a-1998 and
published as IEEE Std 1058, 1998 Edition. Approval is expected 8 December 1998.
13See Footnote 12.
14 This publication is available from Global Engineering, 1990 M Street NW, Suite 400, Washington, DC, 20036, USA.

IEEE
Std 1219-1998 IEEE STANDARD FOR

20 Copyright © 1998 IEEE. All rights reserved.

A.3.1 Determine maintenance effort

The Þrst step in the maintenance planning process is an analysis of current service levels and capabilities.

This includes an analysis of the existing maintenance portfolio and the state of each system within that port-

folio. At the system level, each system should be examined to determine the following:

Ñ Age since being placed in production;

Ñ Number and type of changes during life;

Ñ Usefulness of the system;

Ñ Types and number of requests received for changes;

Ñ Quality and timeliness of documentation;

Ñ Any existing performance statistics (CPU, disk I/O, etc.).

Descriptions at the portfolio level can assist in describing the overall effort and needs of the maintenance

area. This includes the amount and kinds of functional system overlap and gaps within the portfolio architec-

ture.

The reviews of the maintenance staff and the maintenance procedures are also necessary to determine the

overall maintenance effort. The analysis at this stage is simply to gather those measures needed to determine

the following:

Ñ The number of maintainers, their job descriptions, and their actual jobs;

Ñ The experience level of the maintenance staff, both industry-wide and for the particular application;

Ñ The rate of turnover and possible reasons for leaving;

Ñ Current written maintenance methods at the systems and program level;

Ñ Actual methods used by programming staff;

Ñ Tools used to support the maintenance process and how they are used.

Information at this stage is used to deÞne the baseline for the maintenance organization and provide a means

of assessing the necessary changes.

A.3.2 Determine current maintenance process

The maintenance process is a natural outgrowth of many of the baseline measures. Once those measures

have been collected, the actual process needs to be determined. In some organizations, the process is tailored

to the type of maintenance being performed and can be divided in several different ways. This can include

different processes for corrections vs. enhancements, small changes vs. large changes, etc. It is helpful to

classify the maintenance approaches used before deÞning the processes.

Each process will then be described by a series of events. In general, the ßow of work is described from

receipt of a request to its implementation and delivery.

A.3.3 Quantify maintenance effort

Each step in the process needs to be described numerically in terms of volume or time. These numbers can

then be used as a basis to determine the actual performance of the maintenance organization.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 21

A.3.4 Project maintenance requirements

At this stage, the maintenance process needs to be coupled to the business environment. A review of future

expectations should be completed and may include the following:

a) Expected external or regulatory changes to the system;

b) Expected internal changes to support new requirements;

c) Wish-list of new functions and features;

d) Expected upgrades for performance, adaptability, connectivity, etc.;

e) New lines of business that need to be supported;

f) New technologies that need to be incorporated.

These need to be quantiÞed (or sized) to determine the future maintenance load for the organization.

A.3.5 Develop maintenance plan

The information collected will provide a basis for a new maintenance plan. The plan should cover the

following four main areas:

a) Maintenance process;

b) Organization;

c) Resource allocations;

d) Performance tracking.

Each of these issues are addressed and embedded in the Þnal maintenance plan. The actual process should be

described in terms of its scope, the sequence of the process, and the control of the process.

A.3.5.1 Process scope

The plan needs to deÞne the boundaries of the maintenance process. The process begins at some point

(receipt of the request) and will end with some action (delivery and sign-off). In addition, the difference

between maintenance and development should be addressed at this point. Is an enhancement considered to

be a new development, or maintenance? At what point does a newly developed system enter the maintenance

process?

Another issue that should be deÞned within the scope is whether and how the maintenance process will be

categorized. Will there be differences between reporting and other types of maintenance? Will adaptations

and enhancements be considered within the same process or will they be handled differently?

A.3.5.2 Process sequence

The overall ßow of work (and paper) needs to be described. This should include the following:

a) Entry into automated SCM and project management systems;

b) Descriptions of each process step and their interfaces;

c) The data ßow between processes.

The sequence should use the process described in this standard.

IEEE
Std 1219-1998 IEEE STANDARD FOR

22 Copyright © 1998 IEEE. All rights reserved.

A.3.5.3 Process control

Each step in the process should be controlled and measured. Expected levels of performance should be

deÞned. The control mechanisms should be automated, if possible. The control process should follow the

standards set forth in this document.

A.3.5.4 Organization

Staff size can be estimated from the current work load and estimates of future needs. This estimate may also

be based on the expected productivity of each step in the process.

A.3.5.5 Resource allocation

An important part of the maintenance plan is an analysis of the hardware and software most appropriate to

support the organizationÕs needs. The development, maintenance, and target platforms should be deÞned and

differences between the environments should be described. Tool sets that enhance productivity should be

identiÞed and provided. The tools should be accessible to all who need them, and sufÞcient training should

be provided so that their use is well understood.

A.3.5.6 Tracking

Once the process is in place, it should be tracked and evaluated to judge its effectiveness. If each step in the

process has measurement criteria, it should be a straightforward process to collect measurements and evalu-

ate performance over time.

A.3.5.7 Implementation of plan

Implementing a maintenance plan is accomplished in the same way that any organizational change is

performed. It is important to have as much technical, professional, and managerial input as possible when

the plan is being developed.

A.4 Maintenance process

The phases presented herein mirror those in the main body of this standard.

A.4.1 Problem/modiÞcation identiÞcation and classiÞcation

Each system/software and MR should be evaluated to determine its classiÞcation and handling priority and

assignment for implementation as a block of modiÞcations that will be released to the user. A suggested

method for this is to hold a periodic review of all submitted items. This provides a regular, focused forum

and helps prevent the review/analyze/design/implement/test process (which may be iterative) from stalling

due to lack of direction. It also increases awareness of the most requested and most critical items. An agenda

should be distributed prior to the meeting listing the items to be classiÞed and prioritized.

The frequency and duration for modiÞcation classiÞcation review meetings should be project-dependent. A

guideline might be to consider them as status reviews rather than as technical reviews. Using this guideline,

if, after the Þrst few sessions, the reviews take more than an hour or so, their frequency should be increased

to as often as weekly. If review time still seems insufÞcient, determine whether one of the following cases

applies and handle accordingly:

Ñ Discussion is focused on major system enhancements (perfective maintenance). This may require

analysis/review cycles of a development magnitude, rather than at a sustaining maintenance level.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 23

Ñ The system is new, and design/implementation problems require a signiÞcant maintenance effort

immediately following delivery. A suggested strategy, to be used where the impact to operations is

acceptable, is to classify the MRs as corrective/adaptive/perfective/preventive and integrate them

into sets that share the same design areas. Then, rather than prioritizing by individual MR, prioritize

by set. This minimizes repetition of design, code, test, and delivery tasks for the same code modules.

In this case, review meetings may be longer and more frequent until the system is stabilized. A long-

term plan should have a goal of gradually reducing the review meeting overhead.

Ñ The system is aging, and system replacement or reverse engineering and redesign are under consider-

ation.

These are not the only possible cases. They are described to highlight the importance of understanding the

goals for classifying modiÞcations as they apply to a particular system.

MRs should be assigned a priority from

Ñ The MR author or a designated representative;

Ñ A knowledgeable user;

Ñ A domain expert;

Ñ Software engineers (depending on the project, this may include representatives of system analysis

and design, development, integration, test, maintenance, quality control, and SCM); or

Ñ Project management.

The following criteria should be considered:

a) Rough resource estimate, which may be derived from

1) Relative ease/difÞculty of implementation

2) Approximate time to implement (given available human and system resources)

b) Expected impact to current and future users

1) General statement of beneÞts

2) General statement of drawbacks

c) Assignment to an implementation of a block of modiÞcations that are scheduled to minimize the

impact on the user

Detailed cost and impact studies should be performed in the analysis phase, but general cost estimates and

statements of impact are desirable for initial classiÞcation. Since this is an iterative process, it is likely that

handling priority may change during the phases that follow.

A.4.2 Analysis

An MR may generate several system-level functional, performance, usability, reliability, and maintainability

requirements. Each of these may be further decomposed into several software, database, interface, documen-

tation, and hardware requirements. Involvement of requesters, implementors, and users is necessary to

ensure that requirement(s) are unambiguous statements of the request.

Software change impact analysis should

Ñ Identify potential ripple effects;

Ñ Allow trade-offs between suggested software change approaches to be considered;

Ñ Be performed with the help of documentation abstracted from the source code;

Ñ Consider the history of prior changes, both successful and unsuccessful.

IEEE
Std 1219-1998 IEEE STANDARD FOR

24 Copyright © 1998 IEEE. All rights reserved.

The following should be included in a detailed analysis:

Ñ Determine if additional problem analysis/identiÞcation is required;

Ñ Record acceptance or rejection of the proposed change(s);

Ñ Develop an agreed-upon project plan;

Ñ Evaluate any software or hardware constraints that may result from the changes and that need consid-

eration during the design phase;

Ñ Document any project or software risks resulting from the analysis to be considered for subsequent

phases of the change life cycle;

Ñ Recommend the use of existing designs, if applicable.

A.4.3 Design

Actual implementation should begin during this phase, while keeping in mind the continued feasibility of

the proposed change. For example, the engineering staff may not fully understand the impact and magnitude

of a change until the design is complete, or the design of a speciÞc change may be too complex to imple-

ment.

The vehicles for communicating the updated design are project/organization-dependent and may include

portions of a current design speciÞcation, software development Þles, and entries in computer-aided soft-

ware engineering (CASE) tool databases. Other items that may be generated during this phase include a

revised analysis, revised statements of requirements, a revised list of elements affected, a revised plan for

implementation, and a revised risk analysis.

The speciÞcs of the design process may vary from one project to the next and are dependent on such vari-

ables as tool use, size of modiÞcation, size of existing system, availability of a development system, and

accessibility to users and requesting organizations. Product characteristics should also be evaluated when

developing the design so that decisions on how modules of software will be changed will take into consider-

ation the reliability and future maintainability of the total system, rather than focusing on expediency.

A.4.4 Implementation

The primary inputs to this phase are the results of the design phase. Other inputs required for successful

control of this phase include the following:

Ñ Approved and controlled requirements and design documentation;

Ñ An agreed-upon set of coding standards to be used by the maintenance staff;

Ñ Any design metrics/measurements that may be applicable to the implementation phase (these met-

rics/measures may provide insight into code that may be complex to develop or maintain);

Ñ A detailed implementation schedule, noting how many code reviews will take place and at what level;

Ñ A set of responses to the deÞned risks from the previous phase that are applicable to the testing phase.

Risk analysis and review should be performed periodically during this phase rather than at its end, as in the

design and analysis phases. This is recommended because a high percentage of design, cost, and perfor-

mance problems and risks are exposed while modifying the system. Careful measurement of this process is

necessary, and becomes especially important if the number of iterations of the coding, unit testing, and inte-

gration subprocesses is out of scope with the modiÞcation. If this is found true, the feasibility of the design

and/or MR may need reassessment, and a return to the design, analysis, or even the modiÞcation identiÞca-

tion and classiÞcation phase may be warranted.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 25

Prior to a review, the following information may be prepared and provided to attendees:

Ñ Entry criteria for system test;

Ñ Resource allocation and need schedule;

Ñ Detailed test schedule;

Ñ Test documentation forms;

Ñ Anomaly resolution procedures;

Ñ SCM procedures;

Ñ Exit criteria for system test;

Ñ Lower-level test results.

Attendees may include the following:

Ñ The MR author, a designated representative, or a knowledgeable user;

Ñ A domain expert;

Ñ Software engineers (depending on the project, this may include representatives of system analysis

and design, development, integration, test, maintenance, quality control, and SCM);

Ñ Project management.

A.4.5 System test

It is essential to maintain management controls over the execution of system tests to ensure that the non-

technical issues concerning budget and schedule are given the proper attention. This function also ensures

that the proper controls are in place to evaluate the product during testing for completeness and accuracy.

System tests should be performed by an independent test organization, and may be witnessed by the

customer and the end-user. System test is performed on software that is under SCM in accordance with the

provisions of IEEE Std 828-1998.15 SQA is conducted in accordance with the provisions of IEEE Std 730-

1998. The system test is performed with as complete a system as is possible, using simulation/stimulation to

the smallest degree possible. Functions are tested from input to output.

For maintenance releases, it is possible that other testing may have to be done to satisfy requirements to

interact with other systems or subsystems. It may also be necessary to conduct testing to validate that faults

are not introduced as a result of changes.

System tests should be conducted on a fully integrated system. Simulation may be used in cases where it is

not possible to have the completely integrated system in the test facility. However, its use should be mini-

mized. If utilized, it should be identiÞed and justiÞed.

The organization that is responsible for system tests should be independent of the software developers and

designers, but these organizations may be used as a resource of test personnel. Control of software builds,

and all pertinent Þles (source, object, libraries, etc.) during a system test should be done by the SCM func-

tion. Controls to ensure product integrity are executed by the SQA function. They should ensure that the

changes to the products that are submitted are in fact authorized and technically correct.

If changes have been made to the software, or test cases, since the software has been delivered, then it may

be necessary to run regression and unit tests during the analysis phase in order to establish the product base-

line.

15 Information on annex references can be found in A.2.

IEEE
Std 1219-1998 IEEE STANDARD FOR

26 Copyright © 1998 IEEE. All rights reserved.

A.4.6 Acceptance test

The acceptance test is performed to ensure that the products of the modiÞcation are satisfactory to the

customer. The products include the software system and the documentation necessary to support it. The

culmination of the acceptance test is usually the completion of a functional audit and a physical audit (see

IEEE Std 1028-1997).

For maintenance releases, it is possible that other testing may have to be done to satisfy requirements to

interact with other systems or subsystems. It may also be necessary to conduct testing to validate that faults

are not introduced as a result of changes.

Acceptance tests should be conducted on a fully integrated system. Simulation may be used in cases where it

is not possible to have the completely integrated system in the test facility. However, its use should be mini-

mized. This requirement may be modiÞed to include the case where lower-level testing is performed. The

customer, or the customerÕs representative, is responsible for determining the facility requirements that are

necessary. These requirements are documented by the developer in the modiÞcation plan. Acceptance test

facilities may be provided by either the developer or the customer, or a combination of both.

Results of tests conducted prior to the acceptance test-readiness review may be used by the customer to

reduce the scope of acceptance tests. If this is done, the customer should document, in the acceptance test

report, which results were taken from previous tests.

Prior to the completion of acceptance testing, the test organization should be responsible for reporting the

status of the criteria that had been established in the test plan for satisfactory completion of acceptance test-

ing. The status should be reported to the appropriate review committee. The customer, or the customerÕs

representative, should chair the review group and evaluate the exit criteria to ensure that the maintenance

release is ready for delivery to the end-user.

A.4.7 Delivery

Based on how the users access the system, the delivery may entail replacing the existing system with the new

version, duplication of the conÞguration controlled master for delivery to remote users, or digital transmis-

sion.

To reduce the risks associated with installation of the new version of a software system, project management

should plan for and document alternative installation procedures that may ensure minimal impact on the

system users due to unforeseen software failures not detected during testing. The planning should address

time-critical factors (e.g., date/times available for installation, critical milestones of the users, etc.) and resto-

ration/recovery procedures.

When a system modiÞcation affects user interfaces or is a signiÞcant modiÞcation of functionality, user

training may be necessary. This can include formal (classroom) and nonformal methods. When the modiÞca-

tions result in signiÞcant documentation changes, user training should be considered.

SCM is responsible for backing up the system. To ensure recovery, the backup should consist of the existing

system version as well as the new version. To facilitate disaster recovery, complete copies of the system

backup should be archived at an off-site location. The backup should consist of source code, requirement

documentation, design documentation, test documentation (including test case data), and the support envi-

ronment [i.e., operating system, compiler, assembler, test driver(s), and other tools].

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 27

A.5 Maintenance forms

Recording, tracking, and implementing software maintenance requires that various forms be completed and

managed. The following is a list of forms that may be used to perform maintenance, and the IEEE standard

that explains their format and usage.

A.6 VeriÞcation and validation

IEEE Std 1012-1998 should be used to verify and validate that all maintenance requirements are met.

A.7 Software quality assurance

Software quality assurance should be considered when any modiÞcations are made to an existing system. A

modiÞcation to one segment of the system can cause errors to appear somewhere else. Other concerns can

include version control, new documentation release, etc. To ensure that quality is maintained for all modiÞ-

cations, standards as stated in IEEE Std 730-1998, and IEEE Std 983-1986 should be adhered to.

Continuing product quality assurance includes the following:

a) Adherence to the maintenance plan and approach;

b) Testing (including regression testing);

c) Revalidation activities;

d) RecertiÞcation activities.

The same types and levels of assurance practices (e.g., inspections, reviews, audits, V&V, evaluation of met-

ric data, records) should be conducted as were performed during development; the degree and conduct of

these activities is speciÞed in the software maintenance plan. Special care should be given to ensuring that

the original system documentation continues to describe the actual product; during operational use, the time

criticality of effecting a repair to the product often results in the lack of related changes to the documenta-

tion, with accompanying loss of conÞguration control. Similarly, the operational facility should be able to

maintain the distinction between proposed Þxes to the software product needed to provide an immediate res-

olution of a critical problem; adopted Þxes that, due to time criticality, should be utilized prior to having

been authorized; and those corrections that, through testing, revalidation, and recertiÞcation, have been ofÞ-

cially authorized.

Form Standard

Test log IEEE Std 829-1983

Test incident report IEEE Std 829-1983

Test summary report IEEE Std 829-1983

Test design speciÞcation IEEE Std 829-1983

System/software change request IEEE Std 1042-1987

Software change authorization IEEE Std 1042-1987

IEEE
Std 1219-1998 IEEE STANDARD FOR

28 Copyright © 1998 IEEE. All rights reserved.

A.8 Risk assessment

Software maintenance activities consume considerable resources to implement software changes in existing

systems. Traditionally, systems are tested to detect defects in the software. Since defects in various software

workproducts cause failures with different consequences, the signiÞcance (or risk) of each failure/defect

varies.

Software risk is deÞned as the potential loss due to failure during a speciÞc time period. Risk is measured as

a product of the frequency or likelihood of loss and the magnitude or level of exposure. Risk assessment

begins with an analysis of external exposure-determination of the magnitude of loss that can result from

invalid actions. The external exposure is mapped onto the system to determine the magnitude of loss caused

by faults in individual software workproducts. The likelihood of failure for each workproduct is based on its

use, veriÞcation, validation, adaptability, and size characteristics.

In the context of maintenance, the failure can be product- or process-oriented. That is, the failure of the prod-

uct (i.e., errors in function and performance) and process (i.e., inaccurate estimates) have the potential of

increasing costs of the product and are therefore considered risks. Risk abatement techniques for product

risks include testing and maintainability measurement. Risk abatement for the process includes software

change impact analysis.

To measure software risk, several functions should be performed: external exposure identiÞcation, structural

exposure analysis, and software failure likelihood estimation. The following is an outline of these functions

as they pertain to software maintenance risk assessment.

A.8.1 External exposure identiÞcation

The external exposure identiÞcation function has two primary objectives. The Þrst objective is to determine

what actions in the environment outside of the software can contribute to loss. The second objective is to

assess the signiÞcance of the loss.

To this end, the procedure involves the following steps:

a) DeÞnition of environmental hazards. Determine how the organization intends to use the software

system, and potential hazards such as Þnancial troubles, explosions, incorrect patient treatment, mis-

information, loss of life, and like accidents.

b) IdentiÞcation of accident sequences. Investigate how accidents can occur and record them in event

trees, scenarios, or annotated event-sequence diagrams.

c) Failure mode analysis. Identify failure modes from accident sequences and record them in fault

trees. Key failure areas are identiÞed by working backwards in the fault tree.

d) Consequence analysis. Determine the consequence of the faults by weighting the loss estimated for

each accident scenario. Since this has a wide range of factors and conditions, care should be taken to

focus on the key failures.

A.8.2 Structural exposure analysis

Structural exposure analysis is performed to discover how and where software faults can contribute to losses

identiÞed in the external exposure assessment. The objective of this function is to assign exposure levels to

individual workproducts based on their capability to cause failures. The procedure includes the following

activities:

a) Identify software failure modes. Indicate where erroneous information can contribute to loss and

investigate how the software can fail as a result.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 29

b) Determine workproduct fault potential. Locate the potential faults related to the fault modes and

identify associated relationships between faults and losses.

c) Analyze mode use. Locate where potentially faulty workproducts are used.

d) Compute workproduct exposure. Estimate the module exposure by summing its potential loss for all

accident scenarios to which it is related.

A.8.3 Software failure likelihood

The objective of the software failure likelihood function is to predict failure likelihood from workproduct

and maintenance process characteristics. As software testing proceeds, information about the testing process

is used to update or conÞrm initial estimates of failure likelihood. The likelihood of software failure depends

on the number of faults in a workproduct and the probability that the fault will be encountered in the opera-

tion of the system, i.e., failure likelihood depends on the number of faults and the probability that the faults

will cause failures. Risks for each workproduct are determined by the probability of each type of failure

times the costs of that failure.

A.9 Safety

Safety is the ability of a system to avoid catastrophic behavior. Safety requirements may identify critical

functions whose failure may be hazardous to people or property. The results of the procedure described in

A.8.1 may also be applicable. IEEE Std 1228-1994 contains information that may be used to create and

maintain systems with software that have safety aspects.

A.10 Security

The degree to which the system and information access needs to be protected can have an effect on the

manner in which the system is maintained. A system is secure if unauthorized personnel cannot get at

protected information and to the system itself.

Security during the maintenance process should ensure the following:

a) The integrity of the system is preserved by ensuring that only authorized personnel have access to

the system and only authorized changes are implemented. This is accomplished in cooperation with

SCM and SQA.

b) Security features implemented during system development are not compromised, either by inadvert-

ent action or failure to comply with the existing security requirements.

c) New functions added to the system are compatible with the existing security features.

A.11 Software conÞguration management

SCM is a critical element of the software maintenance process. Conformance to IEEE Std 828-1998 and

IEEE Std 1042-1987 should be adhered to. SCM, a procedure-driven process, depends on sound, workable,

and repeatable procedures to implement the software engineering release function. The procedures should

provide for the veriÞcation, validation, and certiÞcation of each step required to identify, authorize, imple-

ment, and release the software product. These procedures should also deÞne the methods used to track the

change throughout the maintenance process, to provide the required traceability, to ensure the integrity of

the product, to keep project management informed with periodic reports, and to document all the activities

involved. During the implementation of the software engineering release process, SCM has responsibilities

in each of the major categories of SCM; i.e., conÞguration identiÞcation, conÞguration audits, change

control, and status accounting.

IEEE
Std 1219-1998 IEEE STANDARD FOR

30 Copyright © 1998 IEEE. All rights reserved.

SCM of documentation during system test should be done by the SCM function. The documents to be

managed are

a) System documentation;

b) Software code and listings;

c) MRs;

d) Test documentation.

Although SCM is not very involved during the initial phases of traditional software development, SCM

should be actively pursued throughout the entire software maintenance process. Failure to provide rigorous

SCM can result in chaos during the maintenance process. A11.1 through A.11.7 address the SCM require-

ments that should prevail during each phase of the maintenance process.

A.11.1 Problem/modiÞcation identiÞcation and classiÞcation

The SCM process is the principal element of the problem identiÞcation phase of software maintenance.

SCM is responsible for receiving and logging the problem (corrective, adaptive, corrective) into the conÞgu-

ration status accounting (CSA) system (IEEE Std 1042-1987). SCM personnel are responsible for routing

the problem to the proper personnel (e.g., system/software engineering, test) for validation and evaluation of

the problem. SCM provides tracking and coordination of the problem documentation during this phase.

A.11.2 Analysis

During the analysis phase, it is an SCM responsibility to provide up-to-date documentation to the personnel

performing the analysis (e.g., systems/software engineering). SCM should also provide up-to-date listings of

the source code and accurate CSA reports showing the current status of the problem.

At the completion of the analysis phase, it is an SCM responsibility to ensure that the analysis results are

presented to a review board (an SCM activity). The review board provides visibility and tracking into the

problem resolution since it is responsible for authorizing further analysis or implementation. The review

board assigns the problems approved for implementation to a software engineering release (block change)

package. Although each problem is implemented independently, control is performed on a block of problems

associated via the software engineering release. SCM is responsible for documenting the proceedings of the

review board and updating the CSA records associated with the problem.

A.11.3 Design

During the design phase, SCM is responsible for ensuring that the design personnel have up-to-date docu-

mentation from the system library. It is crucial that design personnel receive any changes to documentation

as soon as possible after receipt of a change. It is an SCM responsibility to archive and safeguard software

inspection/review results and other design data provided by the design personnel. In an automated design

environment (e.g., CASE), SCM may be required to provide assistance to the design personnel in maintain-

ing version control. SCM is expected to provide assistance and guidance to design personnel in the selection

and use of consistent naming conventions.

At the completion of the design phase, it is a conÞguration management responsibility to ensure that design

documentation is placed in safekeeping and receives SCM control to protect the integrity of the design prod-

uct. In automated systems, conÞguration management is responsible for ensuring rigorous version control.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 31

A.11.4 Implementation

During implementation, SCM is responsible for providing the programmers with copies of the modules to be

changed and ensuring rigorous version control. In situations where multiple changes are made to a single

module, SCM is responsible for ensuring proper staging to prevent losing changes. This requires complete

cooperation and coordination between SCM and the maintenance team. SCM should notify the maintenance

team when updated requirement or design data becomes available.

SCM is responsible for maintaining conÞguration control over all of the support tools used in the software

maintenance process. Control of the tools (i.e., compilers, assemblers, operating systems, link editors) is

crucial to avoid major impacts to the maintenance schedule and in preventing unnecessary rework.

At the completion of the implementation phase, SCM is responsible for collecting all of the modules that

have been changed and placing them in secure library facilities. If a software development folder concept is

used, SCM should ensure that each folder is placed under conÞguration control. SCM is often responsible

for regenerating the system (compile, link, etc.) and making it available for the test personnel. This is a good

practice that ensures consistent results and products for the test group. The librarian of a chief programmer

team may perform this SCM task.

SCM is responsible for ensuring that all the scheduled changes are included in the release package and made

available for systems testing. The entire release package is subjected to a physical audit by SCM and vali-

dated by SQA. The audit veriÞes and validates that all the items (e.g., document updates, test plans/proce-

dures, version descriptions, etc.) are complete. After the successful completion of the audit, the release

package is presented to a review board for approval to proceed with system testing. This approval process

helps reduce wasting system resources for testing when a product is not ready, and provides a substantial

cost/schedule beneÞt.

SCM updates the CSA database with the results of the review board decisions and provides updated status

reports to management and the maintenance team. The results and reports generated by the audit are

archived and become a permanent part of the release package documentation.

A.11.5 System testing

During the system test phase, SCM is responsible for ensuring the integrity of

a) Test-case data;

b) The software product on suitable media;

c) Other test material.

SCM provides the test group with up-to-date test material as requested. In test environments that are auto-

mated, SCM is responsible for maintaining version control over the test material (e.g., test-case drivers,

regression test-case data, etc.).

When system test is complete, SCM is responsible for archiving test material for the test group. SCM adds

the test-report data to the archived release package documentation. Problems encountered during testing are

documented and entered into the CSA database by SCM.

A.11.6 Acceptance testing

SCM provides total control of all the material made available to support acceptance testing. This material is

returned to SCM at the completion of acceptance testing. SCM adds the acceptance test-report data to the

IEEE
Std 1219-1998 IEEE STANDARD FOR

32 Copyright © 1998 IEEE. All rights reserved.

archived release package documentation. Problems encountered during testing are documented and entered

into the CSA database by SCM.

The review board is presented with all the test results, along with recommendations from each group in the

maintenance team to allow an informed decision on the suitability of the system for delivery to the user

community. SCM updates the CSA database with the results of the review board decision and provides

current status reports to management.

A.11.7 Delivery

After approval by the review board and concurrence by project management, SCM is responsible for deliv-

ery of the system to the user community. Based on how the users access the system, the delivery may entail

replacing the existing system with the new version, duplication from a master for delivery to remote users, or

digital transmission to the users. Irrespective of the method, SCM is responsible for preparing and dissemi-

nating the system.

In addition to the physical delivery of the system, SCM is responsible for updating the conÞguration index

records to reßect the new version and archiving the complete system, including all release package data.

SCM should provide copies of the entire system for disaster recovery storage.

A.12 Metrics/measures

Establishing and implementing a metrics plan is critical for providing insight regarding an organizationÕs

level of productivity as well as the quality of the software maintained by that organization. Additional guid-

ance in the form of deÞnitions, methodologies, and rationale for implementing a metrics plan is provided in

IEEE Std 982.1-1988 and IEEE Std 982.2-1988. Metrics/measures captured for maintenance should enable

the manager to manage the process and the implementor to implement the process.

To initialize a metrics process, management needs to identify technical factors that reßect the technical

quality as well as management quality (i.e., effective use of schedule and resources) of the software being

maintained. Once these factors are identiÞed as indicators, then measures should be developed that corre-

spond to the technical factors and quantify those technical factors. It is suggested that the selection of the

technical factors and their corresponding metrics/measures be optimized such that only the factors that are

most pertinent to the speciÞc phase of the maintenance process are addressed during that respective phase of

the maintenance process.

Once these are identiÞed, a cost-beneÞt analysis should be performed to determine the best value that can be

achieved by the organization (in terms of increased productivity and overall better management of the

process) in exchange for the effort expended to collect and analyze the metrics/measurement data. At the

very minimum, effort in terms of work hours should be collected and converted to cost using the organiza-

tionÕs internal labor rate. Additionally, some measure of functionality as well as the error rates generated and

classiÞed by priority and type should be collected.

Some common measures of functionality are source lines of code (SLOC), function points, and feature

points. Whatever method is chosen, it should be well-deÞned and agreed upon within the organization. Tools

used for metrics/measurement collection, analysis, and assessment should be validated, calibrated, and used

consistently throughout the organization.

In the world of software maintenance there are three major cost drivers that dominate the effort expended

during the software maintenance process. These are documentation, communication and coordination, and

testing. Therefore, any software maintenance metrics plan should include metrics/measures that accurately

track performance based on these cost drivers, such as documentation change pages, efforts to negotiate the

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 33

scope of the work to be included in the change package, and classiÞcation of the error rates by priority and

type. Furthermore, any measure of functionality used should be tied to the complexity of the software as

well as the application type (i.e., enhancement, repair, etc.).

A complexity proÞle of each program may be comprised of but not limited to the following:

a) Size of program (number of statements or instructions);

b) Number of modules in programs;

c) Number of variables in programs;

d) Number of global variables in programs;

e) Average module size (in statements);

f) Average number of compares per module;

g) Average number of modules accessing a global variable;

h) List of common modules;

i) List of modules that access more than the average number of global variables;

j) List of modules that exceed the module size limit of 50 statements or exceed the module compare

limit of 10 compares.

The primary data source for the initial metrics/measurement input to the application proÞle is the software

conÞguration library. Once the initial data are captured, an on-going maintenance metrics repository should

be established. This repository should be directly interfaced with the organizationÕs modiÞcation control

system. The modiÞcation control system is a primary data source for the continuing update of the applica-

tions inventory proÞles.

A.13 Software replacement policy

Planning for maintenance should be considered for all systems, even those under initial development.

Although all systems eventually need maintenance, there comes a time when maintenance to an existing

system is not technically or Þscally possible. Trade-offs as to resources, funds, priorities, etc., may dictate

that a system should be replaced rather than changed. The management policy that can help in making a

correct decision includes determination of the following:

a) System outages or failure rate;

b) Code > n years old;

c) Complex system structure or logic;

d) New hardware;

e) Excessive resource requirements;

f) Missing or deÞcient documentation or design speciÞcations.

Additional information can be found in NIST FIPS Pub. No. 106.

IEEE
Std 1219-1998 IEEE STANDARD FOR

34 Copyright © 1998 IEEE. All rights reserved.

Annex B

(informative)

Supporting maintenance technology

B.1 DeÞnitions

The deÞnitions listed below deÞne terms as used in this annex.

B.1.1 adaptive maintenance: Reactive modiÞcation of a software product performed after delivery to make

a computer program usable in a changed environment.

B.1.2 emergency maintenance: Unscheduled corrective maintenance performed to keep a system opera-

tional.

B.1.3 formal unit: In reverse engineering, a unit of a system identiÞed only by its links with other units.

B.1.4 functional unit: In reverse engineering, a unit of a system deÞned by its function; a functional unit

may include one or several formal units, or be a part of a formal unit.

B.1.5 jump: Transfer of control.

B.1.6 re-engineering: A system-changing activity that results in creating a new system that either retains or

does not retain the individuality of the initial system.

B.1.7 restructuring: The translation of an unstructured program into a functionally and semantically equiv-

alent structured program. Restructuring transforms unstructured code into structured code to make the code

more understandable, and thus more maintainable.

B.1.8 schematic: In reverse engineering, a description of links between system units; links are represented

by jumps.

B.2 Re-engineering

Software maintenance is a signiÞcant part of the software engineering process. New code inevitably requires

change: new regulations, changes to functions or the rules that compose functions, corrections to problems,

extensions to functions, etc. These changes are typically treated as a minor part of the development process

and delegated to Òless experiencedÓ programmers. It was generally assumed that these newly developed

systems would have a short life span and be rebuilt once the mass of changes needed by the system became

too costly to undertake. However, these systems have continued to be of signiÞcant value to the organization,

and hence, the revitalization of these aging systems has become a practical option. As a subset of software

maintenance, re-engineering has received a signiÞcant amount of recent attention. Redevelopment of key

systems has become extremely costly in both dollars and disruption. A critical analysis of the software port-

folio and selective re-engineering is a more evolutionary way of bringing old systems up to current standards

and supporting newer technologies. A sound approach to re-engineering can not only revitalize a system, but

also provide reusable material for future systems and form the functional framework for an object-oriented

environment. The techniques to do this have always been available within other engineering disciplines.

However, their application to software is a recent trend, and consequently, the tools to support software re-

engineering are just now emerging.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 35

Re-engineering as an approach is generally composed of two components: reverse engineering, and forward

engineering. Reverse engineering does not change the system. It provides an alternate view of the system at

a different level of abstraction. This generally means redocumenting code as schematics, structure charts, or

ßow diagrams to assist in understanding the logic of the code. Additionally, the process offers opportunities

for measurement, problem identiÞcation, and the formulation of corrective procedures. Forward engineering

is the process of system-building. This process begins with an existing system structure that is the frame-

work for changes and enhancements.

Toolsets to support re-engineering are available and are evolving along the lines of CASE tools; single-func-

tion tools have begun to evolve to component toolsets that will evolve to integrated sets. These computer

assisted re-engineering (CARE) environments will provide seamless reverse and forward engineering tools

that are repository-based. In addition, measurement will play an increasingly important role in problem iden-

tiÞcation and resolution.

B.3 Reverse engineering

Many systems have the source code as the only reliable representation. This is true for a large long-lived

system that has undergone many changes during its lifetime. These systems have substantially overgrown

the initial base system, and have poorly updated documentation.

This is where reverse engineering is a recommended technique for redocumenting the system.

The Þrst document that is needed to easily navigate in a system and to Þnd the location of a problem at the

analysis stage of system maintenance is a program schematic. A program schematic is similar to an electrical

schematic, which is the Þrst document required for maintaining an electrical system.

Parallel deÞnitions of schematic documentation are cited in Table B.1.

Table B.1ÑParallel deÞnitions for schematic documentation

Electrical engineering Software engineering

electrical schematic. A description of links between
units of a device (links are represented by wires).

program schematic. A description of links between
units of a program (links are represented by jumps, i.e.,
transfers of control).

Schematics Òin-the-smallÓ Ñ for local analysis on a unit level

I/O electrical schematic. A description of all wires
connecting an individual electrical unit to other units.

I/O program schematic. A description of all transfers
of control to and from an individual program unit.

Schematics Òin-the-largeÓ Ñ for global analysis on a system level

linear electrical circuit. A succession of consecutively
connected electrical units.

linear program circuit. A succession of consecutively
connected program units.

electrical application. A family of linear circuits
(LCs) executing a speciÞc task of an electrical device.

program application. A family of LCs executing a
speciÞc task of a program.

electrical system anatomy. A list of all applications
with relevant electrical circuits.

program system anatomy. A list of all applications
with relevant program circuits.

IEEE
Std 1219-1998 IEEE STANDARD FOR

36 Copyright © 1998 IEEE. All rights reserved.

The process of reverse engineering evolves through the following six steps:

ÒIn-the-smallÓ-for local analysis on a unit level

Ñ Dissection of source code into formal units;

Ñ Semantic description of formal units and declaration of functional units;

Ñ Creation of input/output (I/O) schematics of units.

ÒIn-the-largeÓ-for global analysis on a system level

Ñ Declaration and semantic description of LCs;

Ñ Declaration and semantic description of system applications;

Ñ Creation of anatomy of the system.

Steps and products of reverse-engineering a computer program are cited in Table B.2.

B.4 Holistic reusing

A functioning reliable system during its lifetime can give birth to a new, stand-alone system that has its own

individuality. The functioning system then becomes a ÒparentÓ system. The newborn system is as reliable as

the parent system (at least at the time of birth). The parent and the offspring systems concurrently exist and

evolve. The process of ÒdeliveryÓ of a new system from the parent system is called holistic reusing. This dif-

fers from system maintenance activity, which occurs within the bounds of one system.

Holistic reusing is also a powerful tool for maintaining a system that cannot be interrupted except for quick

corrective emergency maintenance (to take the bugs out) while the work load is low. Perfective or adaptive

maintenance may need a lot of system time that may not be available in the real world of a running business.

B.5 Software tools

Typical methods and tools that can be used during the maintenance process are listed in Table B.3. Informa-

tion on the tools listed can be found in technical and vendor literature.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 37

Table B.2ÑProcess and products of reverse engineering program schematics

Process steps Products

1. Formally describe all links (transfers
of control) in the program.

Formal units:

unit entrance. A statement to which control is trans-
ferred from another unit, or the Þrst program line.

unit output (exit). A statement from which control is
transferred to another unit.

unit end. A statement preceding the entrance of another
unit.

subroutine unit. A unit that ends with a RETURN-like
command.

nonsubroutine units:

 transiting. A one-to-one unit

 branching. A one-to-many unit.

 rooting. A many-to-one unit.

 starting. A none-to-one unit.

 ending. A one-to-none unit.

unit number. A number assigned to a unit from two sets
of consecutive numbersÑone set for subroutine units,
another for nonsubroutine units.

2. Semantically describe function for
each formal unit, and create functional
units.

A functional unit consisting of one or several formal
units or being a part of a formal unit.

3. Describe links for each unit. An I/O schematic that is combined with a segment of
code belonging to a unit.

4. Create a map of all units. Program LC

FIRST unit. A unit from which LC starts.

LAST unit. A unit at which LC ends.

5. Create a map of all FIRST and LAST
units.

Program applications

6. Create a list of all applications with
relevant LCs.

Program anatomy

IEEE
Std 1219-1998 IEEE STANDARD FOR

38 Copyright © 1998 IEEE. All rights reserved.

Table B.3ÑMethods and tools for maintenance

Activities/methods Tools Manual Auto

I. Problem/modiÞcation identiÞcation

 1. Problem/modiÞcation reproduction Automatic test equipment X

II. Analysis

 1. Code beautifying

 2. Reverse engineering program schematic

 a. ÒIn the smallÓ

 Ð Declaring formal units

 Ð Declaring functional units via dissecting/
 combining formal units

 Ð Mapping I/O schematic for each
 functional unit

 b. ÒIn the largeÓ

 Ð Mapping functional units, and declaring
 program LCs

 Ð Mapping program LCs, and declaring
 program applications (families of LCs)

 Ð Creating anatomy of program

 Ð System metrics/measures

 3. Code restructuring

BeautiÞers

Diagrammer

Expert system

Mapper

Mapper

Mapper

Metric analyzer

Structure analyzer

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

III. Design

 1. Reverse engineering design documentation

 a. Flow-charting

 b. Data-ßow diagramming

 2. Visualizing

 3. Documenting changes (large)

 4. Documenting changes (small)

Diagrammer

Diagrammer

Visualizers

Documenter

Documenter

X

X

X

X

X

X

X

X

X

X

IV. Implementation

 1. Code generation

 2. Code analyzing

 3. Simulation/emulation

 4. Test analyzing

 5. Test data generation

 6. ProÞling

Code generator

Code analyzer

Simulators and emulators

Test analyzers

Test data generators

ProÞlers

X

X

X

X

X

X

X

X

X

X

V. System/acceptance testing

 1. Stress testing

 2. Performance testing

 3. Function testing

Performance monitors

X

X

X

X

X

X

VI. Delivery

 1. Media duplication/veriÞcation Media duplicators/veriÞers X X

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 39

Annex C

(normative)

Maintenance plan guidelines

The purpose of this annex is to provide a template to guide the preparation of a software maintenance plan

based on this standard.

The maintenance plan (MP) should contain the content as described in C.1 through C.8. The user of this

annex may adopt any format and numbering system for the MP. The MP section numbers listed in this annex

are provided to assist in the readability of this annex and are not mandatory for the user.

C.1 (MP Section 1) Introduction

The MP should describe the speciÞc purpose, goals, and scope of the software maintenance effort, including

deviations from this standard. The software maintenance effort for which the plan is being written and the

speciÞc software processes and products covered by the software maintenance effort should be identiÞed.

Date of plan issue and status should be provided. Plan issuing organization and approval authority should be

identiÞed. (See A.3.1.)

1. Introduction

2. References

3. DeÞnitions

4. Software Maintenance Overview

4.1 Organization

4.2 Scheduling Priorities

4.3 Resource Summary

4.4 Responsibilities

4.5 Tools, Techniques, and Methods

5. Software Maintenance Process

5.1 Problem/modiÞcation identiÞcation/classiÞcation, and prioritization

5.2 Analysis

5.3 Design

5.4 Implementation

5.5 System Testing

5.6 Acceptance Testing

5.7 Delivery

6. Software Maintenance Reporting Requirements

7. Software Maintenance Administrative Requirements

7.1 Anomaly Resolution and Reporting

7.2 Deviation Policy

7.3 Control Procedures

7.4 Standards, Practices, and Conventions

7.5 Performance Tracking

7.6 Quality Control of Plan

8. Software Maintenance Documentation Requirements

Figure C.1ÑExample software maintenance plan outline

IEEE
Std 1219-1998 IEEE STANDARD FOR

40 Copyright © 1998 IEEE. All rights reserved.

C.2 (MP Section 2) References

The MP should identify the documents placing constraints on the maintenance effort, documents referenced

by the MP, and any supporting documents supplementing or implementing the MP including other plans or

task descriptions that elaborate details of this plan.

C.3 (MP Section 3) DeÞnitions

The MP should deÞne or reference all terms required to understand the MP. All abbreviations and notations

used in the MP should be described.

C.4 (MP Section 4) Software maintenance overview

The MP should describe organization, scheduling priorities, resources, responsibilities, tools, techniques,

and methods necessary to perform the software maintenance process. (See A.3, A.4, A.5, A.12, and

Annex B.)

C.4.1 (MP Section 4.1) Organization

The MP should describe the organization of the software maintenance effort. The MP should describe the

lines of communication with the software maintenance effort including external organizations, the authority

for resolving issues raised in the software maintenance effort, and the authority for approving software

maintenance products.

C.4.2 (MP Section 4.2) Scheduling priorities

The MP should describe how the maintenance activity will be grouped into work packages, the factors that

determine the organizational maintenance priorities, and the process for assigning a priority to a work pack-

age and how the resources are assigned to prioritized work packages. The schedule estimating method

should be described.

C.4.3 (MP Section 4.3) Resource summary

The MP should summarize the software maintenance resources, including stafÞng, facilities, tools, Þnances,

and special procedural requirements (e.g., security, access rights, and documentation control). The cost esti-

mating method should be described.

C.4.4 (MP Section 4.4) Responsibilities

The MP should identify an overview of the organizational element(s) and responsibilities for maintenance

activities.

C.4.5 (MP Section 4.5) Tools, techniques, and methods

The MP should describe the special documents, software maintenance tools, techniques, methods, and oper-

ating and test environment to be used in the maintenance process. Acquisition, training, support, and qualiÞ-

cation information for each tool, technology, and methodology should be included. The MP should

document the measurements and metrics to be used by the maintenance process and should describe how

these measurements and metrics support the maintenance process.

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 41

C.5 (MP Section 5) Software maintenance process

The MP should identify actions to be performed for each of the software maintenance phases described in

Clause 4, and should document those actions. The MP should contain an overview of the maintenance

phases. (See 4.1 through 4.7, and A.4.)

C.5.1 (MP Sections 5.1 through 5.7) Software maintenance process

The MP should include sections 5.1 through 5.7 for software maintenance phases as shown in the MP out-

line (see Figure C.1).

The MP shall address the following topics for each software maintenance phase:

a) Phase input. What is needed to perform the phase.

b) Phase output. What results when the phase is performed.

c) Phase process. The details of what a phase is expected to do.

d) Phase controls. What is to be performed to control the results of the phase.

NOTEÑThe user of this template should examine 4.1 through 4.7 for process details.

C.6 (MP Section 6) Software maintenance reporting requirements

The MP should describe how information will be collected and provided for each reporting period, includ-

ing: work packages completed, work packages in-work, work packages received, and backlog. Also, risks

should be identiÞed along with their mitigation approach. (See A.7, A.8, and A.11.)

C.7 (MP Section 7) Software maintenance control requirements

The MP should describe the anomaly resolution and reporting; deviation policy; control procedures; and

standards, practices, and conventions. (See A.11.)

C.7.1 (MP Section 7.1) Anomaly resolution and reporting

The MP should describe the method of reporting and resolving anomalies, including the criteria for report-

ing an anomaly, the anomaly distribution list, and authority for resolving anomalies.

C.7.2 (MP Section 7.2) Deviation policy

The MP should describe the procedures and forms used to deviate from the plan. The MP should identify the

authorities responsible for approving deviations.

C.7.3 (MP Section 7.3) Control procedures

The MP should identify control procedures applied during the maintenance effort. These procedures should

describe how software products and maintenance results should be conÞgured, protected, and stored.

IEEE
Std 1219-1998 IEEE STANDARD FOR

42 Copyright © 1998 IEEE. All rights reserved.

C.7.4 (MP Section 7.4) Standards, practices, and conventions

The MP should identify the standards, practices, and conventions that govern the performance of mainte-

nance actions including internal organizational standards, practices, and policies.

C.7.5 (MP Section 7.5) Performance tracking

The MP should describe the procedures for tracking performance through all software maintenance phases

for each work item.

C.7.6 (MP Section 7.6) Quality control of plan

The MP should describe how the plan is reviewed, updated, and approved to ensure plan correctness and

currency.

C.8 (MP Section 8) Software maintenance documentation requirements

The MP should describe the procedures to be followed in recording and presenting the outputs of the main-

tenance process as speciÞed in 4.1.4, 4.2.4, 4.3.4, 4.4.4, 4.5.4, 4.6.4, and 4.7.4. (See A.5.)

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 43

Annex D

(informative)

Guidelines for compliance with IEEE/EIA 12207.1-1997

D.1 Overview

The Software Engineering Standards Committee (SESC) of the IEEE Computer Society has endorsed the

policy of adopting international standards. In 1995, the international standard, ISO/IEC 12207, Information

technologyÑSoftware life cycle processes, was completed. The standard establishes a common framework

for software life cycle processes, with well-deÞned terminology, that can be referenced by the software

industry.

In 1995 the SESC evaluated ISO/IEC 12207 and decided that the standard should be adopted and serve as

the basis for life cycle processes within the IEEE Software Engineering Collection. The IEEE adaptation of

ISO/IEC 12207 is IEEE/EIA 12207.0-1996. It contains ISO/IEC 12207 and the following additions:

improved compliance approach, life cycle process objectives, life cycle data objectives, and errata.

The implementation of ISO/IEC 12207 within the IEEE also includes the following:

Ñ IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information TechnologyÑSoftware life cycle pro-

cessesÑLife cycle data;

Ñ IEEE/EIA 12207.2-1997, IEEE/EIA Guide for Information TechnologyÑSoftware life cycle pro-

cessesÑImplementation considerations; and

Ñ Additions to 11 SESC standards (i.e., IEEE Stds 730, 828, 829, 830, 1012, 1016, 1058, 1062, 1219,

1233, 1362) to deÞne the correlation between the data produced by existing SESC standards and the

data produced by the application of IEEE/EIA 12207.1-1997.

NOTEÑAlthough IEEE/EIA 12207.1-1997 is a guide, it also contains provisions for application as a standard with
speciÞc compliance requirements. This annex treats 12207.1-1997 as a standard.

D.1.1 Scope and purpose

Both this standard and IEEE/EIA 12207.1-1997 place requirements on a Software Maintenance Plan. The

purpose of this annex is to explain the relationship between the two sets of requirements so that users pro-

ducing documents intended to comply with both standards may do so.

D.2 Correlation

This clause explains the relationship between this standard and IEEE/EIA 12207.0-1996 in the following

areas: terminology, process, and life cycle data.

D.2.1 Terminology correlation

The two standards use similar terms in similar ways. This standard discusses a Software Maintenance Plan

whereas IEEE/EIA 12207.0-1996 uses a broader term, maintenance plan, though the focus of 12207.0-1996

is software.

IEEE
Std 1219-1998 IEEE STANDARD FOR

44 Copyright © 1998 IEEE. All rights reserved.

D.2.2 Process correlation

Both this standard and IEEE/EIA 12207.0-1996 use a process-oriented approach for describing the mainte-

nance process. The difference is that this standard is focused on maintenance, whereas IEEE/EIA 12207.0-

1996 provides an overall life cycle view. This standard does not use the activity and task model for a process

used by IEEE/EIA 12207.0-1996. It describes maintenance in terms of phases and steps. This standard

provides a greater level of detail about what is involved in the maintenance of software.

D.2.3 Life cycle data correlation

The information required in a Software Maintenance Plan by this standard and the information required in a

Maintenance Plan by IEEE/EIA 12207.1-1997 are similar. It is reasonable to expect that a single document

could comply with both standards.

D.3 Document compliance

This clause provides details bearing on a claim that a Software Maintenance Plan complying with this stan-

dard would also achieve Òdocument complianceÓ with a Maintenance Plan as prescribed in IEEE/EIA

12207.1-1997. The requirements for document compliance are summarized in a single row of Table 1 of

IEEE/EIA 12207.1-1997. That row is reproduced in Table D.1 of this standard.

The requirements for document compliance are discussed in the following subclauses:

Ñ D.3.1 discusses compliance with the information requirements noted in column 2 of Table D. 1 as

prescribed by 5.5.1.1 of IEEE/EIA 12207.0-1996.

Ñ D.3.2 discusses compliance with the generic content guideline (the ÒkindÓ of document) noted in col-

umn 3 of Table D. 1 as a ÒplanÓ. The generic content guidelines for a ÒplanÓ appear in 5.2 of IEEE/

EIA 12207.1-1997.

Ñ D.3.3 discusses compliance with the speciÞc requirements for a Software Maintenance Plan noted in

column 4 of Table D. 1 as prescribed by 6.8 of IEEE/EIA 12207.1-1997.

Ñ D.3.4 discusses compliance with the life cycle data objectives of Annex H of IEEE/EIA 12207.0-

1996 as described in 4.2 of IEEE/EIA 12207.1-1997.

D.3.1 Compliance with information requirements of IEEE/EIA 12207.0-1996

The information requirements for a Software Maintenance Plan are prescribed by 5.5.1.1 of IEEE/EIA

12207.0-1996. In this case, those requirements are substantively identical to those considered in D.3.3 of this

standard.

Table D.1ÑSummary of requirements for a Software Maintenance Plan

excerpted from Table 1 of IEEE/EIA 12207.1-1997

Information item
IEEE/EIA

12207.0-1996
Clause

Kind
IEEE/EIA

12207.1-1997
Clause

References

Maintenance plan 5.5.1.1 Plan 6.8 EIA/IEEE J-STD 016-1995, E.2.4
IEEE Std 1219-1998

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 45

D.3.2 Compliance with generic content guidelines of IEEE/EIA 12207.1-1997

The generic content guidelines for a ÒplanÓ in IEEE/EIA 12207.1-1997 are prescribed by 5.2 of IEEE/EIA

12207.1-1997. A complying plan shall achieve the purpose stated in 5.2.1 and include the information listed

in 5.2.2 of IEEE.EIA 12207.1-1997.

The purpose of a plan is:

IEEE/EIA 12207.1-1997, subclause 5.2.1: Purpose: DeÞne when, how, and by whom

speciÞc activities are to be performed, including options and alternatives, as required.

A Software Maintenance Plan complying with this standard would achieve the stated purpose.

Any plan complying with 12207.1-1997 shall satisfy the generic content requirements provided in 5.2.2 of

that standard. Table D.2 of this standard lists the generic content items and, where appropriate, references

the clause of this standard that requires the same information.

Table D.2ÑCoverage of generic plan requirements by IEEE Std 1219-1998

IEEE/EIA 12207.1-1997
generic content

Corresponding clauses of
IEEE Std 1219-1998

Additions to
requirements of

IEEE Std 1219-1998

a) Date of issue and status C.1. Introduction Ñ

b) Scope C.1. Introduction Ñ

c) Issuing organization C.1. Introduction Ñ

d) References C.2. References Ñ

e) Approval authority C.1. Introduction Ñ

f) Planned activities and tasks C.5. Software maintenance process Ñ

g) Macro references (policies or laws that give
rise to the need for this plan)

C.2. References Ñ

h) Micro references (other plans or task
descriptions that elaborate details of this plan)

C.2. References Ñ

i) Schedules C.4.2 Scheduling priorities Ñ

j) Estimates C.4.3 Resource summary Ñ

k) Resources and their allocation C.4.3 Resource summary Ñ

l) Responsibilities and authority C.4.4 Responsibilities Ñ

m) Risks C.6. Software maintenance reporting
requirements

Ñ

n) Quality control measures

(NOTEÑThis includes quality control of the
Software Maintenance Plan itself.)

C.7.6 Quality control of plan Ñ

IEEE
Std 1219-1998 IEEE STANDARD FOR

46 Copyright © 1998 IEEE. All rights reserved.

D.3.3 Compliance with speciÞc content requirements of IEEE/EIA 12207.1-1997

The speciÞc content requirements for a Software Maintenance Plan in IEEE/EIA 12207.1-1997 are

prescribed by 6.8 of IEEE/EIA 12207.1-1997. A complying Software Maintenance Plan shall achieve the

purpose stated in 6.8.1 and include the information listed in 6.8.3 of IEEE/EIA 12207.1-1997.

The purpose of a Software Maintenance Plan is:

IEEE/EIA 12207.1-1997, subclause 6.8.1: Purpose: DeÞne the objectives, standards, and procedures

to be used in the software maintenance process.

A Software Maintenance Plan complying with this standard and meeting the additional requirements of

Table D.2 and Table D.3 would achieve the stated purpose.

A Software Maintenance Plan complying with 12207.1-1997 shall satisfy the speciÞc content requirements

provided in 6.8.3 of that standard. The speciÞc content requirements of 6.8.3 reiterate the generic content

requirements and specify that the generic requirements shall be satisÞed for several activities. The activities

are listed in Table D.3 of this standard along with reference to the clauses of this standard that speciÞcally

deal with the activity.

D.3.4 Compliance with life cycle data objectives

In addition to the content requirements, life cycle data shall be managed in accordance with the objectives

provided in Annex H of IEEE/EIA 12207.0-1996.

o) Cost C.4.3 Resource summary Ñ

p) Interfaces among parties involved C.4.1 Organization Ñ

q) Environment / infrastructure
(including safety needs)

C.4.5 Tools, techniques, and methods Ñ

r) Training C.4.5 Tools, techniques, and methods Ñ

s) Glossary C.3. DeÞnitions Ñ

t) Change procedures and history

(NOTEÑThis includes the change procedures
for the Software Maintenance Plan itself.)

C.7.3 Control procedures Ñ

Table D.2ÑCoverage of generic plan requirements by IEEE Std 1219-1998 (continued)

IEEE/EIA 12207.1-1997
generic content

Corresponding clauses of
IEEE Std 1219-1998

Additions to
requirements of

IEEE Std 1219-1998

IEEE
SOFTWARE MAINTENANCE Std 1219-1998

Copyright © 1998 IEEE. All rights reserved. 47

D.4 Conclusion

Users of this standard will probably Þnd compliance with IEEE/EIA 12207.0-1996 to be a relatively

straightforward exercise. The analysis suggests that any Software Maintenance Plan complying with IEEE

this standard would with the additions listed in Table D.3 also comply with the requirements of a Mainte-

nance Plan in IEEE/EIA 12207.1-1997 In addition, to comply with IEEE/EIA 12207.1-1997, a Software

Maintenance Plan shall support the life cycle data objectives of Annex H of IEEE/EIA 12207.0-1996.

Table D.3ÑCoverage of speciÞc Software Maintenance Plan requirements

by IEEE Std 1219-1998

IEEE/EIA 12207.1-1997
speciÞc content

Corresponding clauses of
IEEE Std 1219-1998

Additions to
requirements of

IEEE Std 1219-1998

a) i) Maintenance process implementation A.3 Maintenance planning

a) ii) Problem and modiÞcation analysis 4.1 Problem/modiÞcation identiÞcation,
classiÞcation, and prioritization
4.2 Analysis

a) iii) ModiÞcation implementation 4.3 Design
4.4 Implementation

a) iv) Maintenance review/acceptance 4.5 System testing
4.6 Acceptance testing

a) v) Migration Ñ Discussion of migration
where appropriate

a) vi) Software retirement A.13 Software replacement policy

b) Standards, tools, etc. C.4.5 Tools, techniques, and methods

